References

[Christiaens2015]

D. Christiaens, M. Reisert, T. Dhollander, S. Sunaert, P. Suetens, and F. Maes. Global tractography of multi-shell diffusion-weighted imaging data using a multi-tissue model. NeuroImage, 123 (2015), pp. 89–101. [full text link]

[CorderoGrande2019]

L. Cordero-Grande, D. Christiaens, J. Hutter, A.N. Price, J.V. Hajnal Complex diffusion-weighted image estimation via matrix recovery under general noise models. NeuroImage 200 (2019), pp. 391-404 [full text link]

[Dhollander2014]

T. Dhollander, L. Emsell, W. Van Hecke, F. Maes, S. Sunaert, and P. Suetens. Track Orientation Density Imaging (TODI) and Track Orientation Distribution (TOD) based tractography. NeuroImage, 94 (2014), pp. 312–336. [full text link]

[Dhollander2016a]

T. Dhollander, D. Raffelt, and A. Connelly. A novel iterative approach to reap the benefits of multi-tissue CSD from just single-shell (+b=0) diffusion MRI data. Proceedings of the 24th annual meeting of the International Society of Magnetic Resonance in Medicine (2016), pp. 3010. [full text link]

[Dhollander2016b]

T. Dhollander, D. Raffelt, and A. Connelly. Unsupervised 3-tissue response function estimation from single-shell or multi-shell diffusion MR data without a co-registered T1 image. ISMRM Workshop on Breaking the Barriers of Diffusion MRI (2016), pp. 5. [full text link]

[Dhollander2017]

T. Dhollander, D. Raffelt, and A. Connelly. Towards interpretation of 3-tissue constrained spherical deconvolution results in pathology. Proceedings of the 25th annual meeting of the International Society of Magnetic Resonance in Medicine (2017), pp. 1815. [full text link]

[Dhollander2018a]

T. Dhollander, D. Raffelt, and A. Connelly. Accuracy of response function estimation algorithms for 3-tissue spherical deconvolution of diverse quality diffusion MRI data. Proceedings of the 26th annual meeting of the International Society of Magnetic Resonance in Medicine (2018), pp. 1569. [full text link]

[Dhollander2018b]

T. Dhollander, J. Zanin, B.A. Nayagam, G. Rance, and A. Connelly. Feasibility and benefits of 3-tissue constrained spherical deconvolution for studying the brains of babies. Proceedings of the 26th annual meeting of the International Society of Magnetic Resonance in Medicine (2018), pp. 3077. [full text link]

[Dhollander2019]

T. Dhollander, R. Mito, D. Raffelt, and A. Connelly. Improved white matter response function estimation for 3-tissue constrained spherical deconvolution. Proceedings of the 27th annual meeting of the International Society of Magnetic Resonance in Medicine (2019), pp. 555. [full text link]

[Jeurissen2014]

B. Jeurissen, J.-D. Tournier, T. Dhollander, A. Connelly, and J. Sijbers. Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data. NeuroImage, 103 (2014), pp. 411–426. [full text link]

[Mito2018a]

R. Mito, D. Raffelt, T. Dhollander, D.N. Vaughan, J.-D. Tournier, O. Salvado, A. Brodtmann, C.C. Rowe, V.L. Villemagne, and A. Connelly. Fibre-specific white matter reductions in Alzheimer’s disease and mild cognitive impairment. Brain, 141(3) (2018), pp. 888–902. [full text link]

[Mito2018b]

R. Mito, T. Dhollander, D. Raffelt, Y. Xia, O. Salvado, A. Brodtmann, C.C. Rowe, V.L. Villemagne, and A. Connelly. Investigating microstructural heterogeneity of white matter hyperintensities in Alzheimer’s disease using single-shell 3-tissue constrained spherical deconvolution. Proceedings of the 26th annual meeting of the International Society of Magnetic Resonance in Medicine (2018), pp. 135. [full text link]

[Raffelt2011]

D. Raffelt, J.-D. Tournier, J. Fripp, S Crozier, A. Connelly, O. Salvado. Symmetric diffeomorphic registration of fibre orientation distributions. NeuroImage 56 (2011), pp. 1171–1180. [full text link]

[Raffelt2012]

D. Raffelt, J.-D. Tournier, S. Rose, G.R. Ridgway, R. Henderson, S. Crozier, O. Salvado, A. Connelly. Apparent Fibre Density: a novel measure for the analysis of diffusion-weighted magnetic resonance images. NeuroImage 59 (2012), pp. 3976–3994. [full text link]

[Raffelt2015]

D.A. Raffelt, R.E. Smith, G.R. Ridgway, J.-D. Tournier, D.N. Vaughan, S. Rose, R. Henderson, A. Connelly. Connectivity-Based Fixel Enhancement: Whole-Brain Statistical Analysis of Diffusion MRI Measures in the Presence of Crossing Fibres. NeuroImage 117 (2015), pp. 40–55. [full text link]

[Raffelt2017]

D.A. Raffelt, J.-D. Tournier, R.E. Smith, D.N. Vaughan, G. Jackson, G.R. Ridgway, A. Connelly. Investigating White Matter Fibre Density and Morphology using Fixel-Based Analysis. NeuroImage, 144 (2017), pp. 58-73. [full text link]

[Reisert2011]

M. Reisert, I. Mader, C. Anastasopoulos, M. Weigel, S. Schnell, and V. Kiselev. Global fiber reconstruction becomes practical. NeuroImage, 54 (2011) pp. 955–962. [full text link]

[Smith2012]

R.E. Smith, J.-D. Tournier, F. Calamante, A. Connelly. Anatomically-constrained tractography: improved diffusion MRI streamlines tractography through effective use of anatomical information. NeuroImage 62 (2012), pp. 1924–1938. [full text link]

[Smith2013]

R.E. Smith, J.-D. Tournier, F. Calamante, A. Connelly. SIFT: Spherical-deconvolution informed filtering of tractograms. NeuroImage 67 (2013), pp. 298–312. [full text link]

[Smith2015]

R.E. Smith, J.-D. Tournier, F. Calamante, A. Connelly. SIFT2: Enabling dense quantitative assessment of brain white matter connectivity using streamlines tractography. NeuroImage 119 (2015), pp. 338-51. [full text link]

[Smith2019a]

R.E. Smith, D. Dimond, S. Bray, A. Connelly. Mitigation of DWI brain cropping in Fixel-Based Analysis. In Proc OHBM (2019), W765 [full text link]

[Tax2014]

C.M.W. Tax, B. Jeurissen, S.B.Vos, M.A. Viergever, and A. Leemans. Recursive calibration of the fiber response function for spherical deconvolution of diffusion MRI data. NeuroImage, 86 (2014), pp. 67–80. [full text link]

[Tournier2004]

J.-D. Tournier, F. Calamante, D.G. Gadian, and A. Connelly. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage, 23 (2004), pp. 1176–85. [full text link]

[Tournier2007]

J.-D. Tournier, F. Calamante, and A. Connelly. Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage, 35 (2007), pp. 1459–72. [full text link]

[Tournier2012]

J.-D. Tournier, F. Calamante, A. Connelly. MRtrix: Diffusion tractography in crossing fiber regions. INT J IMAG SYST TECH, 22 (2012), pp. 53-66. [full text link]

[Tournier2013]

J.-D. Tournier, F. Calamante, and A. Connelly. Determination of the appropriate b value and number of gradient directions for high-angular-resolution diffusion-weighted imaging. NMR Biomed., 26 (2013), pp. 1775–86. [full text link]

[Tournier2019]

J.-D. Tournier, R. E. Smith, D. Raffelt, R. Tabbara, T. Dhollander, M. Pietsch, D. Christiaens, B. Jeurissen, C.-H. Yeh, and A. Connelly. MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. NeuroImage, 202 (2019), pp. 116–37. [fulltext link]

[Veraart2016a]

J. Veraart, E. Fieremans, and D.S. Novikov. Diffusion MRI noise mapping using random matrix theory. Magn. Res. Med. 76(5) (2016), pp. 1582–1593. [full text link]

[Veraart2016b]

J. Veraart, D.S. Novikov, D. Christiaens, B. Ades-aron, J. Sijbers, and E. Fieremans Denoising of diffusion MRI using random matrix theory. NeuroImage 142 (2016), pp. 394–406. [full text link]