

Welcome to the MRtrix user documentation!

MRtrix provides a large suite of tools for image processing, analysis and visualisation, with a focus on the analysis of white matter using diffusion-weighted MRI. Features include the estimation of fibre orientation distributions using constrained spherical deconvolution ([Tournier2004]; [Tournier2007]; [Jeurissen2014]), visualisation of these via directionally-encoded colour maps ([Dhollander2015a]) and panchromatic sharpening ([Dhollander2015b]), a probabilisitic streamlines algorithm for fibre tractography of white matter ([Tournier2012]), fixel-based analysis of apparent fibre density and fibre cross-section ([Raffelt2012]; [Raffelt2015]; [Raffelt2017]), quantitative structural connectivity analysis ([Smith2012]; [Smith2013]; [Smith2015]; [Christiaens2015]), and non-linear spatial registration of fibre orientation distribution images ([Raffelt2011]).

These applications have been written from scratch in C++, using the functionality provided by Eigen [http://eigen.tuxfamily.org/], and Qt [http://qt-project.org/]. The software is currently capable of handling DICOM, NIfTI and AnalyseAVW image formats, amongst others. The source code is distributed under the Mozilla Public License [http://mozilla.org/MPL/2.0/].

Install

	Before you install

	Linux installation

	macOS installation

	Windows installation

	Deploying MRtrix3

	HPC clusters installation

Getting started

	Key features

	Commands and scripts

	Beginner DWI tutorial

	Images and other data

	Command-line usage

	Configuration file

DWI Pre-processing

	DWI denoising

	DWI distortion correction using dwipreproc

Constrained Spherical Deconvolution

	Response function estimation

	Constrained spherical deconvolution

	Multi-shell multi-tissue constrained spherical deconvolution

Fixel-Based Analysis

	Fibre density and cross-section - Single-tissue CSD

	Fibre density and cross-section - Multi-tissue CSD

	Expressing the effect size relative to controls

	Displaying results with streamlines

Quantitative Structural Connectivity

	Anatomically-Constrained Tractography (ACT)

	Spherical-deconvolution Informed Filtering of Tractograms (SIFT)

	Structural connectome construction

	Using the connectome visualisation tool

	labelconvert: Explanation & demonstration

	Global tractography

	ISMRM tutorial - Structural connectome for Human Connectome Project (HCP)

Spatial Normalisation

	Warping images using warps generated from other packages

Concepts

	Diffusion gradient scheme handling

	Phase encoding scheme handling

	Global intensity normalisation

	Orthonormal Spherical Harmonic basis

	Maximum spherical harmonic degree lmax

	“Fixels” (and “Dixels”)

	Motivation for afdconnectivity

Tips and Tricks

	DICOM handling

	Batch processing with foreach

Troubleshooting

	Crashes, errors and performance issues

	Display issues

	Frequently Asked Questions (FAQ)

	Advanced debugging

Reference

	List of MRtrix3 commands

	List of MRtrix3 scripts

	List of MRtrix3 configuration file options

	MRtrix 0.2 equivalent commands

	References

Before you install

Acknowledging this work

If you wish to include results generated using the MRtrix3 package in a publication, please include a line such as the following to acknowledge the work of our developers:

	Processing was performed using the MRtrix3 package (www.mrtrix.org).

Note

Many individual methods included in the MRtrix3 software have been published in scientific journals and should be cited as such. Please check the references listed on the specific application’s page to ensure the appropriate reference is included, so that the scientists behind all methods receive proper acknowledgement.

 Linux installation

Linux installation

We outline the steps for installing MRtrix3 on a Linux machine. Please consult
the MRtrix3 forum [http://community.mrtrix.org/] if you encounter any
issues with the configure, build or runtime operations of MRtrix3.

Check requirements

To install MRtrix3, you will need the following:

	a C++11 [https://en.wikipedia.org/wiki/C%2B%2B11] compliant
compiler (GCC version >= 4.9, clang)

	Python [https://www.python.org/] version >= 2.7

	The zlib [http://www.zlib.net/] compression library

	Eigen [http://eigen.tuxfamily.org] version >= 3.2

	Qt [http://www.qt.io/] version >= 4.7 [GUI components only]

and optionally:

	libTIFF [http://www.libtiff.org/] version >= 4.0 (for TIFF support)

	FFTW [http://www.fftw.org/] version >= 3.0 (for improved performance in
certain applications, currently only mrdegibbs)

Warning

To run the GUI components of MRtrix3 (mrview &
shview), you will also need:

	an OpenGL [https://en.wikipedia.org/wiki/OpenGL] 3.3 compliant graphics card and corresponding software driver

Note that this implies you cannot run the GUI components over a remote
X11 connection, since it can’t support OpenGL 3.3+ rendering - see
Remote display issues for details.

 macOS installation

macOS installation

We outline the steps for installing MRtrix3 on macOS. Please consult
the MRtrix3 forum [http://community.mrtrix.org/] if you encounter any issues
with the configure, build or runtime operations of MRtrix3.

Check requirements

To install MRtrix3 , you will need the following:

	a C++11 [https://en.wikipedia.org/wiki/C%2B%2B11] compliant
compiler (e.g. clang [http://clang.llvm.org/] in Xcode)

	Python [https://www.python.org/] version >= 2.7 (already included in macOS)

	The zlib [http://www.zlib.net/] compression library (already included in macOS)

	Eigen [http://eigen.tuxfamily.org/] version >= 3.2

	Qt [http://www.qt.io/] version >= 5.1 [GUI components only] -
important: versions prior to this will not work

and optionally:

	libTIFF [http://www.libtiff.org/] version >= 4.0 (for TIFF support)

	FFTW [http://www.fftw.org/] version >= 3.0 (for improved performance in
certain applications, currently only mrdegibbs)

Warning

To run the GUI components of MRtrix3 (mrview & shview), you will also need:

	an OpenGL [https://en.wikipedia.org/wiki/OpenGL] 3.3 compliant
graphics card and corresponding software driver - thankfully OpenGL 3.3
is supported across the entire macOS range with OS versions >= 10.9.

 Windows installation

Windows installation

We outline the steps for installing MRtrix3 for Windows using
MSYS2 [https://github.com/msys2/msys2/wiki].
Please consult the MRtrix3 forum [http://community.mrtrix.org/] if you
encounter any issues with the configure, build or runtime operations of
MRtrix3.

Warning

Some of the Python scripts provided with MRtrix3 are dependent on
external software tools (for instance FSL). If these packages are
not available on Windows, then the corresponding MRtrix3 scripts
also cannot be run on Windows. A virtual machine may therefore be
required in order to use these particular scripts; though MRtrix3
may still be installed natively on Windows for other tasks.

 Deploying MRtrix3

Deploying MRtrix3

The installation instructions provided in the preceding pages produce a working
install for the current user only. There are many advantages to this:

	no need for admin privileges, either for the initial install (beyond
installation of dependencies), or any subsequent updates;

	users are in control of the precise version of MRtrix3 they are using for
their specific projects - no system updates will interfere with their study.

However, system administrators and software distributors will want to install
MRtrix3 in a system-wide location to make it accessible to all users; and/or to
deploy it to other systems without requiring a full rebuild. While MRtrix3
does not provide an explicit command to do this, it is a trivial process:

	build the code

	copy the bin/, lib/ and share/ folders together to the desired
target location

	set the PATH to point to the bin/ folder.

This can be done any number of ways. The only requirement is that these 3
folders are co-located alongside each other, so that the executables can find
the MRtrix3 shared library, and the scripts can find the requisite python
modules.

Note also that this structure is broadly compatible with the Linux Filesystem
Hierarchy Standard [https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard].
It should be perfectly possible to merge the MRtrix3 bin/, lib/ and
share/ folders with the system’s existing equivalent locations in /usr/
or /usr/local/ if desired, in which case there would be no need to
explicitly set the PATH (assuming /usr/bin or /usr/local/bin/ are
already in the PATH). However, there is no requirement that it be
installed anywhere in particular, and we expect most sysadmins will prefer to
place them in a separate location to minimise any chance of conflict.

Below we provide step-by-step instructions for creating a single tar file that
can then be copied to other systems and extracted in the desired folder:

	Obtain, configure and build the desired version of MRtrix3:

$ git checkout http://github.com/MRtrix3/mrtrix3.git
$ cd mrtrix3
$./configure
$./build

	Collate the relevant folders and their contents into a single archive file:

$ tar cvfz mrtrix3.tgz bin/ lib/ share/

	Copy the resulting mrtrix3.tgz file over to the target system, into a
suitable location., for example (as root):

mkdir /usr/local/mrtrix3
cp mrtrix3.tgz /usr/local/mrtrix3/

	Extract the archive in this location (as root):

cd /usr/local/mrtrix3/
tar xvfz mrtrix3.tgz

Assuming no errors were generated, you can safely remove the mrtrix3.tgz
file at this point.

	Add the newly-extracted bin/ folder to the PATH, e.g.:

$ export PATH=/usr/local/mrtrix3/bin:"$PATH"

At which point MRtrix3 command should be available to the corresponding
user.

Note that the above command will only add MRtrix3 to the PATH for the
current shell session. You would need to add the equivalent line to your
users’ startup scripts, using whichever mechanism is appropriate for your
system.

 HPC clusters installation

HPC clusters installation

These instructions outline a few issues specific to high-performance
computing (HPC) systems.

Installing MRtrix3

Most HPC clusters will run some flavour of GNU/Linux and hence
a cluster administrator should be able to follow the steps outlined for a Linux installation.
In particular, if your sysadmin is able to install the required dependencies (the
preferred option), you should be able to subsequently Build MRtrix3.

However, it is not uncommon for HPC systems to run stable, and hence
relatively old distributions, with outdated dependencies. This is
particularly problematic since MRtrix3 relies on recent technologies
(C++11, OpenGL 3.3), which are only available on recent distributions.
There is therefore a good chance these dependencies simply cannot be
installed (certainly not without a huge amount of effort on the part of
your sysadmin). In such cases, one can instead attempt a Standalone installation on Linux.
Alternatively, if you (and your sysadmin) are comfortable with installation
of dependencies from source within your home directory, you can try the
instructions below.

Installation of MRtrix3 and dependencies from source

The following instructions list the steps I used to compile MRtrix3
natively on a local HPC cluster. Replicating these instructions line-for-line
may not work on another system; I’m just providing these instructions here
in case they help to point somebody in the right direction, or encourage users
to try a native installation rather than resorting to transferring binaries
compiled on another system.

	Installing a C++11-compliant g++ from source

Note that during this process, there will be three gcc directories
created: one is for the source code (including that of some prerequisites),
one is for compilation objects, and one is the target of the final
installation (since you almost certainly won’t be able to install this
version of gcc over the top of whatever is provided by the HPC
sysadmin).

svn co svn://gcc.gnu.org/svn/gcc/branches/gcc-5-branch gcc_src/

(Don’t checkout the trunk gcc code; MRtrix3 will currently not compile with it)

The following gcc dependencies will be built as part of the gcc
compilation, provided that they are placed in the correct location [https://gcc.gnu.org/install/prerequisites.html]
within the gcc source directory.

wget https://gmplib.org/download/gmp/gmp-6.1.1.tar.bz2
tar -xf gmp-6.1.1.tar.bz2
mv gmp-6.1.1/ gcc_src/gmp/
wget ftp://ftp.gnu.org/gnu/mpc/mpc-1.0.3.tar.gz
tar -xf mpc-1.0.3.tar.gz
mv mpc-1.0.3/ gcc_src/mpc/
wget http://www.mpfr.org/mpfr-current/mpfr-3.1.4.tar.gz
tar -xf mpfr-3.1.4.tar.gz
mv mpfr-3.1.4/ gcc_src/mpfr/

With the following, the configure script (which resides within the
gcc_src directory in this example) must not be executed within that
directory; rather, it must be executed from an alternative directory, which
will form the target location for the compilation object files. The target
installation directory (set using the --prefix option below) must be a
location for which you have write access; most likely somewhere in your
home directory.

mkdir gcc_obj; cd gcc_obj/
../gcc_src/configure --prefix=/path/to/installed/gcc --disable-multilib
make && make install

	Installing Python3 from source

My local HPC cluster provided Python version 2.6.6, which was not adequate
to successfully run the configure and build scripts in MRtrix3.
Therefore this necessitated a manual Python install - a newer version of
Python 2 would also work, but downloading Python 3 should result in less
ambiguity about which version is being run.

wget https://www.python.org/ftp/python/3.5.2/Python-3.5.2.tgz
tar -xf Python-3.5.2.tgz
mv Python-3.5.2/ python3/
cd python3/
./configure
./make
cd ../

	Installing Eigen3

wget http://bitbucket.org/eigen/eigen/get/3.2.8.tar.gz
tar -xf 3.2.8.tar.gz
mv eigen* eigen3/

	Installing MRtrix3

Personally I prefer to install a no-GUI version of MRtrix3 on
high-performance computing systems, and transfer files to my local system
if I need to view anything; so I use the -nogui flag for the
configure script.

git clone https://github.com/MRtrix3/mrtrix3.git
cd mrtrix3/
export CXX=/path/to/installed/gcc/bin/g++
export EIGEN_CFLAGS="-isystem /path/to/eigen3/"
export LD_LIBRARY_PATH="/path/to/installed/gcc/lib64:$LD_LIBRARY_PATH"
../python3/python configure -nogui
../python3/python build

If you encounter issues when running MRtrix3 commands that resemble
the following:

mrconvert: /usr/lib64/libstdc++.so.6: version `GLIBCXX_3.4.9' not found (required by mrconvert)

This indicates that the shared library of the compiler version installed on
the cluster is being found before that of the C++11-compliant compiler
installed manually. The lib64/ directory of the manually-installed
gcc version must appear before that of the version installed on the
cluster in the LD_LIBRARY_PATH environment variable.

Remote display

Most people would expect to be able to run mrview on the server using
X11 forwarding. Unfortunately, this will not work without some effort -
please refer to Remote display issues for details.

Configuration

There are a number of parameters that can be set in the configuration
file that are highly relevant in a HPC environment, particularly when
the user’s home folder is stored over a network-based filesystem (as is
often the case). The MRtrix3 configuration file is located either
system-wide in /etc/mrtrix.conf, and/or in each user’s home folder
in ~/.mrtrix.conf. Entries consist of key: value entries, one
per line, stored as ASCII text.

	NumberOfThreads (default: hardware
concurrency [http://en.cppreference.com/w/cpp/thread/thread/hardware_concurrency],
as reported by the system): by default, MRtrix3 will use as many
threads as the system reports being able to run concurrently. You may
want to change that number to a lower value, to prevent MRtrix3 from
taking over the system entirely. This is particularly true if you
anticipate many users running many MRtrix3 commands concurrently.

	TmpFileDir (default: ‘/tmp’): any image data passed from one
MRtrix3 command to the next using a Unix pipeline is actually stored
in a temporary file, and its filename passed to the next command.
While this is fine if the filesystem holding the temporary file is
locally backed and large enough, it can cause significant slowdown
and bottlenecks if it resides on a networked filesystems, as the
temporary file will most likely need to be transferred in its
entirety over the network and back again. Also, if the filesystem is
too small, MRtrix3 commands may abort when processing large files. In
general, the /tmp folder is likely to be the most appropriate
(especially if mounted as
tmpfs [http://en.wikipedia.org/wiki/Tmpfs]). If however it is not
locally mounted, or too small, you may want to set this folder to
some other more suitable location.

	TrackWriterBufferSize (default: 16777216). When writing out track
files, MRtrix3 will buffer up the output and write out in chunks of
16MB, to limit the frequency of write() calls and the amount of IO
requests. More importantly, when several instances of MRtrix3 are
generating tracks concurrently and writing to the same filesystem,
frequent small writes will result in massive fragmentation of the
output files. By setting a large buffer size, the chances of writes
being concurrent is reduced drastically, and the output files are
much less likely to be badly fragmented. Note that fragmentation can
seriously affect the performance of subsequent commands that need to
read affected data. Depending on the type of operations performed, it
may be beneficial to use larger buffer sizes, for example 256MB. Note
that larger numbers imply greater RAM usage to hold the data prior to
write-out, so it is best to keep this much smaller than the total RAM
capacity.

 Key features

Key features

While MRtrix3 is primarily intended to be used for the analysis of
diffusion MRI data, at its fundamental level it is designed as a
general-purpose library for the analysis of any type of MRI data. As such,
it provides a back-end to simplify a large number of operations, many of
which will be invisible to the end-user. Specifically, MRtrix3 features:

	a consistent command-line interface, with
inline documentation for each command

	universal import/export capabilities when
accessing image data across all MRtrix3 applications.

	Multi-file numbered image support to load multiple images as a
single multi-dimensional dataset

	efficient use of Unix Pipelines for complex workflows

	high performance on modern multi-core systems, with multi-threading
used extensively throughout MRtrix3;

	available on all common modern operating systems (GNU/Linux,
MacOSX, Windows);

	a consistent Coordinate system with most
operations performed in scanner/world coordinates where possible.

 Commands and scripts

Commands and scripts

The MRtrix3 software package includes a suite of tools for image analysis and visualisation. With the exception of mrview and shview, all MRtrix3 executables are designed to be run via a terminal using a consistent command-line interface. While many of the tools and features are discussed within tutorials found in this documentation, a comprehensive List of MRtrix3 commands and List of MRtrix3 scripts can be found in the reference section. These lists provide links to the help page (manual) for each executable, which can also be accessed by typing the -help option after the executable name on the terminal.

 Beginner DWI tutorial

Beginner DWI tutorial

Warning

This tutorial is not intended to show the optimal or even recommended way of processing. It is merely a simplified example, intended to familiarise the user with the typical command line interface of certain basic processing steps.

 Images and other data

Images and other data

Image format handling in MRtrix3

MRtrix3 provides a flexible data input/output back-end in the shared
library, which is used across all applications. This means that all
applications in MRtrix3 can read or write images in all the supported
formats - there is no need to explicitly convert the data to a given
format prior to processing.

However, some specialised applications may expect additional information
to be present in the input image. The MRtrix .mif/.mih formats are both
capable of storing such additional information data in their header, and
will hence always be supported for such applications. Most image formats
however cannot carry additional information in their header (or at
least, not easily) - this is in fact one of the main motivations for the
development of the MRtrix image formats. In such cases, it would be
necessary to use MRtrix format images. Alternatively, it may be
necessary to provide the additional information using command-line
arguments (this is the case particularly for the DW gradient table, when
providing DWI data in NIfTI format for instance).

Image file formats are recognised by their file extension. One exception
to this is DICOM: if the filename corresponds to a folder, it is assumed
to contain DICOM data, and the entire folder will be scanned recursively
for DICOM images.

It is also important to note that the name given as an argument will not
necessarily correspond to an actual file name on disk: in many cases,
images may be split over several files. What matters is that the text
string provided as the image specifier is sufficient to unambiguously
identify the full image.

Coordinate system

All MRtrix3 applications will consistently use the same coordinate
system, which is identical to the
NIfTI [http://nifti.nimh.nih.gov/nifti-1] standard. Note that this
frame of reference differs from the DICOM
standard [https://www.dabsoft.ch/dicom/3/C.7.6.2.1.1/] (typically the
x & y axis are reversed). The convention followed by MRtrix3 applications
is as follows:

	dimensional

	description

	0 (x)

	increasing from left to right

	1 (y)

	increasing from posterior to anterior

	2 (z)

	increasing from inferior to superior

All coordinates or vector components supplied to MRtrix3 applications
should be provided with reference to this coordinate system.

Multi-file numbered image support

It is possible to access a numbered series of images as a single
multi-dimensional dataset, using a syntax specific to MRtrix. For example:

$ mrinfo MRI-volume-[].nii.gz

will collate all images that match the pattern
MRI-volume-<number>.nii.gz, sort them in ascending numerical order,
and access them as a single dataset with dimensionality one larger than
that contained in the images. In other words, assuming there are 10
MRI-volume-0.nii.gz to MRI-volume-9.nii.gz, and each volume is a
3D image, the result will be a 4D dataset with 10 volumes.

Note that this isn’t limited to one level of numbering:

$ mrconvert data-[]-[].nii combined.mif

will collate all images that match the data-number-number.nii
pattern and generate a single dataset with dimensionality two larger
than its constituents.

Finally, it is also possible to explicitly request specific numbers,
using Number sequences and floating-point lists
within the square brackets:

$ mrconvert data-[10:20].nii combined.mif

Data types

MRtrix3 applications can read and write data in any of the common data types.
Many MRtrix3 commands also support the -datatype option to specify the
data type for the output image. For example:

$ mrconvert DICOM_images/ -datatype float32 output.nii

Note

Not all image formats support all possible datatypes. The MRtrix image file
formats are designed to handle all of the possibilities listed below, while
other image formats may only support a subset. When a data type is requested
that isn’t supported by the image format, a hopefully suitable alternative
data type will be used instead.

 Command-line usage

Command-line usage

MRtrix3 generally follows a relatively standard Unix syntax, namely:

$ command [options] argument1 argument2 ...

If you need to become familiar with using the command-line, there are
plenty of tutorials online to get you started. There are however a few notable
features specific to MRtrix3, which are outlined below.

Ordering of options on the command-line

Options can typically occur anywhere on the command-line, in any order -
they do not usually need to precede the arguments.

For instance, all three of the lines below will have the same result:

$ command -option1 -option2 argument1 argument2
$ command argument1 argument2 -option1 -option2
$ command -option2 argument1 argument2 -option1

Care must however be taken in cases where a command-line option itself
has an associated compulsory argument. For instance, consider a command-line
option -number, which allows the user to manually provide a numerical
value in order to control some behaviour. The user’s desired value
must be provided immediately after ‘-number’ appears on the
command-line in order to be correctly associated with that particular option.

For instance, the following would be interpreted correctly:

$ command -number 10 argument1 argument2

But the following would not:

$ command -number argument1 10 argument2

The following cases would also not be interpreted correctly by MRtrix3,
even though some other softwares may interpret their command-line options in
such ways:

$ command -number10 argument1 argument2
$ command --number=10 argument1 argument2

There are a few cases in MRtrix3 where the order of options on the
command-line does matter, and hence the above demonstration does not apply:

	mrcalc: mrcalc is a stack-based calculator, and as such, the
order of inputs and operations on the command-line determine how the
mathematical expression is formed.

	mrview: mrview includes a number of command-line options for
automatically configuring the viewing window, and importing data into
its various tools. Here the order of such options does matter: the
command line contents are read from left to right, and any command-line
options that alter the display of a particular image or data open within
a tool is applied to the most recent data (image or otherwise) opened
by the tool associated with that option.

	Scripts: A subset of the Python scripts provided with MRtrix3
(currently 5ttgen and dwi2response) require the selection
of an algorithm, which defines the approach that the script will use to
arrive at its end result based on the data provided. The name of this
algorithm must be the first argument on the command-line; any
command-line options provided prior to this algorithm name will be
silently ignored.

Number sequences and floating-point lists

Some options expect arguments in the form of number sequences or
floating-point lists of numbers. The former consists or a series of
integers separated by commas or colons (no spaces), with colons
indicating a range, optionally with an increment (if different from 1).
For example:

	1,4,8 becomes [1 4 8]

	3,6:12,2 becomes [3 6 7 8 9 10 11 12 2]

	1:3:10,8:2:0 becomes [1 4 7 10 8 6 4 2 0]

Note that the sign of the increment does not matter, it will always run
in the direction required.

Likewise, floating-point lists consist of a comma-separated list of
numbers, for example:

	2.47,-8.2223,1.45e-3

Using shortened option names

Options do not need to be provided in full, as long as the initial part
of the option provided is sufficient to unambiguously identify it.

For example:

$ mrconvert -debug in.mif out.nii.gz

is the same as:

$ mrconvert -de in.mif out.nii.gz

but will conflict with the -datatype option if shortened any
further:

$ mrconvert -d in.mif out.nii.gz
mrconvert: [ERROR] several matches possible for option "-d": "-datatype, "-debug"

Unix Pipelines

The output of one program can be fed straight through to the input of
another program via Unix
pipes [http://en.wikipedia.org/wiki/Pipeline_%28Unix%29] in a single
command. The appropriate syntax is illustrated in this example:

$ dwi2tensor /data/DICOM_folder/ - | tensor2metric - -vector ev.mif
dwi2tensor: [done] scanning DICOM folder "/data/DICOM_folder/"
dwi2tensor: [100%] reading DICOM series "ep2d_diff"...
dwi2tensor: [100%] reformatting DICOM mosaic images...
dwi2tensor: [100%] loading data for image "ACME (hm) [MR] ep2d_diff"...
dwi2tensor: [100%] estimating tensor components...
tensor2metric: [100%] computing tensor metrics...

This command will execute the following actions:

	dwi2tensor will load the input diffusion-weighted data in DICOM
format from the folder /data/DICOM_folder/ and compute the
corresponding tensor components. The resulting data set is then fed
into the pipe.

	tensor2metric will access the data set from the pipe, generate an
eigenvector map and store the resulting data set as ev.mif.

The two stages of the pipeline are separated by the | symbol, which
indicates to the system that the output of the first command is to be
used as input for the next command. The image that is to be fed to or
from the pipeline is specified for each program using a single dash
- where the image would normally be specified as an argument.

For this to work properly, it is important to know which arguments each
program will interpret as input images, and which as output images. For
example, this command will fail:

dwi2tensor - /data/DICOM_folder/ | tensor2metric - ev.mif

In this example, dwi2tensor will hang waiting for input data (its
first argument should be the input DWI data set). This will also cause
tensor2metric to hang while it waits for dwi2tensor to provide some
input.

Advanced pipeline usage

Such pipelines are not limited to two programs. Complex operations can
be performed in one line using this technique. Here is a longer example:

$ dwi2tensor /data/DICOM_folder/ - | tensor2metric - -vector - | mrcalc -
mask.nii -mult - | mrview -
dwi2tensor: [done] scanning DICOM folder "/data/DICOM_folder/"
dwi2tensor: [100%] reading DICOM series "ep2d_diff"...
dwi2tensor: [100%] reformatting DICOM mosaic images...
dwi2tensor: [100%] loading data for image "ACME (hm) [MR] ep2d_diff"...
dwi2tensor: [100%] estimating tensor components...
tensor2metric: [100%] computing tensor metrics...
mrcalc: [100%] computing: (/tmp/mrtrix-tmp-VihKrg.mif * mask.nii) ...

This command will execute the following actions:

	dwi2tensor will load the input diffusion-weighted data in DICOM
format from the folder /data/DICOM_folder/ and compute the
corresponding tensor components. The resulting data set is then fed
into the pipe.

	tensor2metric will access the tensor data set from the pipe,
generate an eigenvector map and feed the resulting data into the next
stage of the pipeline.

	mrcalc will access the eigenvector data set from the pipe,
multiply it by the image mask.nii, and feed the resulting data into
the next stage of the pipeline.

	mrview will access the masked eigenvector data set from the pipe
and display the resulting image.

How is it implemented?

The procedure used in MRtrix3 to feed data sets down a pipeline is somewhat
different from the more traditional use of pipes. Given the large amounts of
data typically contained in a data set, the ‘standard’ practice of feeding the
entire data set through the pipe would be prohibitively inefficient. MRtrix3
applications access the data via memory-mapping (when this is possible), and do
not need to explicitly copy the data into their own memory space. When using
pipes, MRtrix3 applications will simply generate a temporary file and feed
its filename through to the next stage once their processing is done. The next
program in the pipeline will then simply read this filename and access the
corresponding file. The latter program is then responsible for deleting the
temporary file once its processing is done.

This implies that any errors during processing may result in undeleted
temporary files. By default, these will be created within the /tmp folder
(on Unix, or the current folder on Windows) with a filename of the form
mrtrix-tmp-XXXXXX.xyz (note this can be changed by specifying a custom
TmpFileDir and TmpFilePrefix in the Configuration file). If a piped
command has failed, and no other MRtrix programs are currently running, these
can be safely deleted.

Really advanced pipeline usage

As implemented, MRtrix3 commands treat image file names that start with
the TmpFilePrefix (default is mrtrix-tmp-) as temporary. When
reading the image name from the previous stage in the pipeline, the
image file name will trivially match this. But this also means that it
is possible to provide such a file as a normal argument, and it will
be treated as a temporary piped image. For example:

$ mrconvert /data/DICOM/ -datatype float32 -
mrconvert: [done] scanning DICOM folder "/data/DICOM/"
mrconvert: [100%] reading DICOM series "ep2d_diff"...
mrconvert: [100%] reformatting DICOM mosaic images...
mrconvert: [100%] copying from "ACME (hm) [MR] ep2d_diff" to "/tmp/mrtrix-tmp-zcD1nr.mif"...
/tmp/mrtrix-tmp-zcD1nr.mif

Notice that the name of the temporary file is now printed on the
terminal, since the command’s stdout has not be piped into another
command, and we specified - as the second argument. You’ll also see
this file is now present in the /tmp folder. You can use this file
by copy/pasting it as an argument to another MRtrix command (be
careful though, it will be deleted once this command exits):

$ mrstats /tmp/mrtrix-tmp-zcD1nr.mif
 channel mean median std. dev. min max count
 [0] 1053.47 96 1324.71 0 3827 506880
 [1] 173.526 84 140.645 0 549 506880
...

This allows for a non-linear arrangement of pipelines, whereby multiple
pipelines can feed into a single command. This is achieved by using the
shell’s output capture feature to insert the temporary file name of one
pipeline as an argument into a second pipeline. In BASH, output capture
is achieved using the $(commands) syntax, or equivalently using
backticks: `commands`. For example:

$ dwi2tensor /data/DICOM/ - | tensor2metric - -mask $(dwi2mask /data/DICOM/ - | maskfilter - erode -npass 3 -) -vec ev.mif -fa - | mrthreshold - -top 300 highFA.mif
dwi2mask: [done] scanning DICOM folder "/data/DICOM/"
dwi2tensor: [done] scanning DICOM folder "/data/DICOM/"
dwi2mask: [100%] reading DICOM series "ep2d_diff"...
dwi2tensor: [100%] reading DICOM series "ep2d_diff"...
dwi2mask: [100%] reformatting DICOM mosaic images...
dwi2tensor: [100%] reformatting DICOM mosaic images...
dwi2mask: [100%] loading data for image "ACME (hm) [MR] ep2d_diff"...
dwi2tensor: [100%] loading data for image "ACME (hm) [MR] ep2d_diff"...
dwi2mask: [100%] finding min/max of "mean b=0 image"...
dwi2mask: [done] optimising threshold...
dwi2mask: [100%] thresholding...
dwi2tensor: [100%] estimating tensor components...
dwi2mask: [100%] finding min/max of "mean b=1000 image"...
dwi2mask: [done] optimising threshold...
dwi2mask: [100%] thresholding...
dwi2mask: [done] computing dwi brain mask...
maskfilter: [100%] applying erode filter to image -...
tensor2metric: [100%] computing tensor metrics...
mrthreshold: [100%] thresholding "/tmp/mrtrix-tmp-UHvhc2.mif" at 300th top voxel...

In this one command, we asked the system to perform this non-linear
pipeline:

 dwi2tensor \
 |--> tensor2metric ---> mrthreshold
dwi2mask ---> maskfilter /

More specifically:

	dwi2tensor will load the input diffusion-weighted data in DICOM
format from the folder /data/DICOM/ and compute the corresponding
tensor components. The resulting data set is then fed into the pipe.

	meanwhile, dwi2mask will generate a brain mask from the DWI
data, and feed the result into a second pipeline.

	maskfilter will access the mask from this second pipeline,
erode the mask by 3 voxels, and output the name of the temporary
file for use as an argument by the next stage.

	tensor2metric will access the tensor data set from the first
pipe, generate eigenvector and FA maps within the mask provided as an
argument by the second pipeline, store the eigenvector map in
ev.mif and feed the FA map into the next stage of the pipeline.

	mrthreshold will access the FA image from the pipe, identify the
300 highest-valued voxels, and produce a mask of these voxels, stored
in highFA.mif.

 Configuration file

Configuration file

The behaviour of a number of aspects of MRtrix3 can be controlled by
the user via the MRtrix3 configuration file. Note, that this file is distinct
from the build configuration file that is generated as part of the MRtrix3
installation, but rather is used to specify default settings for a number of
parameters, many of which relate to data visualisation when using mrview.

For all available configurable options, please refer to the
configuration file options page.

Location

MRtrix3 applications will attempt to read configuration information from a two
locations. The system-wide configuration file /etc/mrtrix.conf is read
first if present, followed by the user-specific configuration
~/.mrtrix.conf. If both system and user-specific configuration files
exist, the parameters specified in the two configuration files will be
aggregated, with user-specified configuration options taking precedence in the
case of a conflict. In the case that a particular configuration parameter is
not defined, MRtrix3 will resort to hard-coded defaults.

Format

The configuration files are text files, with each line containing a key:
value pair. For example

Analyse.LeftToRight: false
NumberOfThreads: 2

Note

Key names are case-sensitive.

 DWI denoising

DWI denoising

MRtrix includes a command dwidenoise, which implements DWI data
denoising and noise map estimation by exploiting data redundancy in the PCA
domain ([Veraart2016a] and [Veraart2016b]). The method uses the
prior knowledge that the eigenspectrum of random covariance matrices is
described by the universal Marchenko Pastur distribution.

Recommended use

Image denoising must be performed as the first step of the image-processing
pipeline. Interpolation or smoothing in other processing steps, such as motion
and distortion correction, may alter the noise characteristics and thus
violate the assumptions upon which MP-PCA is based.

Typical use will be:

dwidenoise dwi.mif out.mif -noise noise.mif

where dwi.mif contains the raw input DWI image, out.mif is the denoised
DWI output, and noise.mif is the estimated spatially-varying noise level.

We always recommend eyeballing the residuals, i.e. out - in, as part of the
quality control. The lack of anatomy in the residual maps is a marker of
accuracy and signal-preservation during denoising. The residuals can be easily
obtained with

mrcalc dwi.mif out.mif -subtract res.mif
mrview res.mif

The kernel size, default 5x5x5, can be chosen by the user (option: -extent).
For maximal SNR gain we suggest to choose N>M for which M is typically the
number of DW images in the data (single or multi-shell), where N is the
number of kernel elements. However, in case of spatially varying noise, it
might be beneficial to select smaller sliding kernels, e.g. N~M, to balance
between precision, accuracy, and resolution of the noise map.

Note that this function does not correct for non-Gaussian noise biases yet.

 DWI distortion correction using dwipreproc

DWI distortion correction using dwipreproc

The dwipreproc script, responsible for performing general pre-processing of
DWI series, has been completely re-designed as part of the MRtrix3
3.0_RC1 update. Although the ‘guts’ of the script are completely new, the
fundamental operation - eddy current-induced distortion correction, motion
correction, and (optionally) susceptibility-induced distortion correction,
using FSL’s eddy / topup / applytopup tools, remains the same.
While the user interface remains reasonably similar to that provided
previously (examples to come), they are slightly different.

The major benefit of the new design is that MRtrix3 is now capable of not
only capturing the relevant phase encoding information from DICOM headers,
but also using that information within dwipreproc to internally generate
the necessary phase encoding table files in order to run these FSL tools. This
comes with a number of benefits:

	It makes it possible to acquire and process a wider range of DWI acquisition
designs, without requiring that the user laboriously manually construct the
phase encoding tables that these FSL tools require.

	It means that automated pre-processing pipelines (e.g. these two works [https://github.com/BIDS-Apps/FibreDensityAndCrosssection]-in-progress [https://github.com/BIDS-Apps/MRtrix3_connectome]) can be applied to
provided data without requiring manual intervention to specify this
information.

	Over time, as MRtrix 0.3.16 code is used to import DICOMs (and hence
capture the phase encoding information) and the relevant code is thoroughly
tested, there will be less onus on users to track and specify the type of
phase encoding acquisition performed.

Note

Although the dwipreproc script is provided as part of MRtrix3 in the
hope that users will find it useful, the major image processing steps
undertaken by this script are still performed using tools developed at FMRIB
and provided as part of FSL. It is therefore essential that the appropriate
references be cited whenever this script is used!

 Response function estimation

Response function estimation

A prerequisite for spherical deconvolution is obtaining the response
function(s), which is/are used as the kernel(s) by the deconvolution
algorithm. For the white matter, the response function models the signal
expected for a voxel containing a single, coherently oriented bundle
of axons [Tournier2004] [Tournier2007]. In case of multi-tissue
variants of spherical deconvolution, response functions for other
tissue types are introduced as well; typically to represent grey
matter(-like) and/or CSF(-like) signals [Jeurissen2014] [Dhollander2016a].

In MRtrix3, the dwi2response script offers a range of algorithms
to estimate these response function(s) directly from your dataset itself.
This process of estimating response function(s) from the data is
non-trivial. No single algorithm works for any possible scenario,
although some have proven to be more widely applicable than others.

General recommendations

Choice of algorithm

While many algorithms exist, the following appear to perform well in a wide
range of scenarios, based on experience and testing from both developers and
the MRtrix3 community [http://community.mrtrix.org]:

Single-tissue CSD: If you intend to perform (single-tissue)
Constrained spherical deconvolution (e.g. via dwi2fod csd),
the tournier algorithm is a convenient and reliable way to estimate
the single-fibre white matter response function:

dwi2response tournier dwi.mif wm_response.txt

Other options include the fa or tax algorithms.

Multi-tissue CSD or global tractography: If you intend to perform a
multi-tissue analysis, such as Multi-shell multi-tissue constrained spherical deconvolution (e.g. via dwi2fod
msmt_csd) or Global tractography (e.g. via tckglobal), the
dhollander algorithm is a convenient and reliable way to estimate the
single-fibre white matter response function as well as the grey matter and
CSF response functions:

dwi2response dhollander dwi.mif wm_response.txt gm_response.txt csf_response.txt

Other options include the msmt_5tt algorithm.

Checking the results

In general, it’s always worthwhile checking your response function(s):

shview wm_response.txt

Use the left and right arrow (keyboard) keys in this viewer to switch
between the different b-values (‘shells’) of the response function, if
it has more than one b-value (this would for example be the case for
the outputs of the dhollander algorithm).

It may also be helpful to check which voxels were selected by the
algorithm to estimate the response function(s) from. For any
dwi2response algorithm, this can be done by adding the -voxels
option, which outputs an image of these voxels. For example, for
the tournier algorithm:

dwi2response tournier dwi.mif wm_response.txt -voxels voxels.mif

The resulting voxels.mif image can be overlaid on the dwi.mif
dataset using the mrview image viewer for further inspection.

Available algorithms

The available algorithms differ in a few general properties, related
to what they deliver (as output) and require (as input), notably

	single- versus multi-tissue: whether they only estimate a
single-fibre white matter response function (tournier, tax
and fa) or also additional response functions for other tissue
types (dhollander and msmt_5tt both output a single-fibre
white matter response function as well as grey matter and CSF
response functions)

	single versus multiple b-values: whether they only output
response function(s) for a single b-value (tournier, tax
and fa) or for all—or a selection of— b-values (dhollander
and msmt_5tt)

	input requirements: whether they only require the DWI dataset
as input (tournier, dhollander, tax and fa) or
also additional input(s) (msmt_5tt requires a 5TT segmentation
from a spatially aligned anatomical image)

Beyond these general categories, the algorithms differ mostly in the actual
strategy used to determine the voxels that will be used to estimate
the response function(s) from.

The manual choice is an exception to most of the above, in that it
allows/requires you to provide the voxels yourself, and even allows
you to provide single-fibre orientations manually as well. It should
only be considered in case of exceptional kinds of data, or otherwise
exceptional requirements. Caution is advised with respect to interpretation
of spherical deconvolution results using manually defined response
function(s).

The following sections provide more details on each algorithm specifically.

dhollander

This algorithm currently is the original implementation of the strategy proposed
in [Dhollander2016b] to estimate multi b-value (single-shell + b=0, or
multi-shell) response functions for single-fibre white matter (anisotropic),
grey matter and CSF (both isotropic), which can subsequently be used for
multi-tissue (constrained) spherical deconvolution algorithms. It has the
distinct advantage of requiring only the DWI data as input, in contrast to
other multi-tissue response function estimations methods, making it the
simplest and most accessible method, and a sensible default for applications
that require multi-shell responses.

This is a fully automated unsupervised algorithm that leverages the relative
diffusion properties of the 3 tissue response functions with respect to each
other, to select the most appropriate voxels from which to estimate the
response functions. It has been used successfully in a wide range of conditions
(overall data quality, pathology, developmental state of the subjects,
animal data and ex-vivo data). Additional insights into its performance are
presented in [Dhollander2018a]. Due to its ability to deal with the presence
of extensive white matter (hyperintense) lesions, it was for example also
successfully used in [Mito2018a]. Finally, the response functions as obtained
in this particular way also form the basis of the 3-tissue framework to study
the microstructure of lesions and other pathology [Dhollander2017] [Mito2018b].

In almost all cases, it runs and performs well out of the box. In exceptional
cases where the anisotropy in the data is particularly low (very early development,
ex-vivo data with low b-value, …), it may be advisable to set the -fa
parameter lower than its default value of 0.2. See [Dhollander2018b] for an
example of a dataset where changing this parameter was required to obtain
good results.

As always, check the -voxels option output in unusually (challenging) cases.

For more information, refer to the
dhollander algorithm documentation.

fa

This algorithm is an implementation of the strategy proposed in [Tournier2013]
to estimate a single b-value (single-shell) response function of single-fibre
white matter, which can subsequently be used for single-tissue (constrained)
spherical deconvolution. The algorithm estimates this response function from
the 300 voxels with the highest FA value in an eroded brain mask. There are
also options to change this number or provide an absolute FA threshold.

Due to relying only on FA values, this strategy is relatively
limited in its abilities to select the best voxels. In white matter
close to CSF, for example, Gibbs ringing can affect FA values.
More advanced iterative strategies, such as the tournier and tax
algorithms have been proposed more recently.

For more information, refer to the
fa algorithm documentation.

manual

This algorithm is provided for cases where none of the available
algorithms give adequate results, for deriving multi-shell multi-tissue
response functions in cases where the voxel mask for each tissue must be
defined manually, or for anyone who may find it useful if trying to
devise their own mechanism for response function estimation. It requires
manual definition of both the single-fibre voxel mask (or just a voxel
mask for isotropic tissues); the fibre directions can also be provided
manually if necessary (otherwise a tensor fit will be used).

For more information, refer to the
manual algorithm documentation.

msmt_5tt

This algorithm is a reimplementation of the strategy proposed in
[Jeurissen2014] to estimate multi b-value response functions of single-fibre
white matter (anisotropic), grey matter and CSF (both isotropic), which can
subsequently be used for multi-tissue (constrained) spherical deconvolution.
The algorithm is primarily driven by a prior (The 5TT format) tissue segmentation,
typically obtained from a spatially aligned anatomical image. This also
requires prior correction for susceptibility-induced (EPI) distortions of the
DWI dataset. The algorithm selects voxels with a segmentation partial volume of
at least 0.95 for each tissue type. Grey matter and CSF are further
constrained by an (upper) 0.2 FA threshold. Single-fibre voxels within the WM
segment are then extracted using the tournier algorithm (in contrast
to original publication, see Replicating original publications below).

The input tissue segmentation can be estimated using the same pre-processing
pipeline as required for Anatomically-Constrained Tractography (ACT), namely: correction for
motion and (EPI and other) distortions present in the diffusion MR data,
registration of the structural to (corrected) EPI data, and spatial
segmentation of the anatomical image. This process is therefore also dependent on
the accuracy of each of these steps, so that the T1 image can be reliably used
to select pure-tissue voxels in the DWI volumes. Failure to achieve high
accuracy for each of these individual steps may result in inappropriate voxels
being used for response function estimation, with concomitant errors in tissue estimates.

The dhollander algorithm does not rely on a number of these steps. A comparison
is presented in [Dhollander2018a].

For further information, refer to the
msmt_5tt algorithm documentation.

tax

This algorithm is a reimplementation of the iterative approach proposed in
[Tax2014] to estimate a single b-value (single-shell)
response function of single-fibre white matter, which can subsequently be used
for single-tissue (constrained) spherical deconvolution. The algorithm iterates
between performing CSD and estimating a response function from all voxels
detected as being ‘single-fibre’ from the CSD result itself. The criterion for
a voxel to be ‘single-fibre’ is based on the ratio of the amplitude of second
tallest to the tallest peak. The method is initialised with a ‘fat’ response
function; i.e., a response function that is safely deemed to be much less
‘sharp’ than the true response function.

This algorithm has occasionally been found to be unstable and converge
towards suboptimal solutions. The tournier algorithm has been engineered
with the intention to overcome some of the issues believed to be the
cause of these instabilities (see some discussion on this topic
here [https://github.com/MRtrix3/mrtrix3/issues/422]
and here [https://github.com/MRtrix3/mrtrix3/pull/426]).

For more information, refer to the
tax algorithm documentation.

tournier

This algorithm is a reimplementation of the iterative approach proposed in
[Tournier2013] to estimate a single b-value (single-shell)
response function of single-fibre white matter, which can subsequently be used
for single-tissue (constrained) spherical deconvolution. The algorithm iterates
between performing CSD and estimating a response function from a set of the
best ‘single-fibre’ voxels, as detected from the CSD result itself. Notable
differences between this implementation and the algorithm described in
[Tournier2013] include:

	This implementation is initialised by a sharp lmax=4 response function
as opposed to one estimated from the 300 brain voxels with the highest FA.

	This implementation uses a more complex metric to measure how
‘single-fibre’ FODs are: √|peak1| × (1 − |peak2| / |peak1|)²,
as opposed to a simple ratio of the two tallest peaks. This new metric has
a bias towards FODs with a larger tallest peak, to avoid favouring
small, yet low SNR, FODs.

	This implementation only performs CSD on the 3000 best ‘single-fibre’
voxels (of the previous iteration) at each iteration.

While the tournier algorithm has a similar iterative structure as the
tax algorithm, it was adjusted with the intention to overcome some
occasional instabilities and suboptimal solutions resulting from the
latter. Notable differences between the tournier and tax algorithms
include:

	The tournier algorithm is initialised by a sharp (lmax=4) response
function, while the tax algorithm is initialised by a fat response
function.

	This implementation of the tournier algorithm uses a more complex
metric to measure how ‘single-fibre’ FODs are (see above), while the
tax algorithm uses a simple ratio of the two tallest peaks.

	The tournier algorithm estimates the response function at each
iteration only from the 300 best ‘single-fibre’ voxels, while the
tax algorithm uses all ‘single-fibre’ voxels.

Due to these differences, the tournier algorithm is currently believed to
be more robust in a wider range of scenarios (for further information on this
topic, refer to some of the discussions here [https://github.com/MRtrix3/mrtrix3/issues/422]
and here [https://github.com/MRtrix3/mrtrix3/pull/426]).

For more information, refer to the
tournier algorithm documentation.

Replicating original publications

For completeness, we provide below instructions for replicating the approaches
used in previous relevant publications. Note that the implementations provided
below are not necessarily exactly as published, but aim to be close
approximations nonetheless.

Spherical deconvolution and Constrained spherical deconvolution

In the original spherical deconvolution [Tournier2004] and constrained
spherical deconvolution [Tournier2007] papers, the response function was
estimated by extracting the 300 voxels with the highest FA values within a
brain mask, eroded to avoid noisy voxels near the edge of the brain. This
can be performed using the fa method directly:

dwi2response fa dwi.mif response.txt

where:

	dwi.mif is the input DWI data set,

	response.txt is the estimated response function, produced as output

MSMT-CSD and Global tractography

In the original multi-shell multi-tissue CSD [Jeurissen2014] and global
tractography [Christiaens2015] papers, response functions were estimated using
a prior tissue segmentation obtained from a coregistered structural T1 scan.
For the WM response, a further hard FA threshold was used: respectively 0.7 in
the MSMT-CSD paper and 0.75 in the global tractography paper. This pipeline can be
replicated using the 5ttgen command and msmt_5tt algorithm with
the -sfwm_fa_threshold option in this fashion:

5ttgen fsl T1.mif 5tt.mif
dwi2response msmt_5tt dwi.mif 5tt.mif wm_response.txt gm_response.txt csf_response.txt -sfwm_fa_threshold 0.7

where:

	T1.mif is a coregistered T1 data set from the same subject (input)

	5tt.mif is the resulting tissue type segmentation, used subsequently used in the response function estimation (output/input)

	dwi.mif is the same dwi data set as used above (input)

	<tissue>_response.txt is the tissue-specific response function as used above (output)

To replicate the global tractography paper, specify a value of 0.75
instead of 0.7 as shown in the command line above.

 Constrained spherical deconvolution

Constrained spherical deconvolution

Introduction

Constrained Spherical Deconvolution (CSD) [Tournier2007] estimates a
white matter fibre Orientation Distribution Function (fODF) based on an
estimate of the signal expected for a single-fibre white matter population (the
so-called response function). This is used as the kernel in a deconvolution
operation to extract a white matter fODF from dMRI signal measured within
each voxel.

User guide

Prerequisites

Constrained Spherical Deconvolution as defined in [Tournier2007] relies on
single-shell high angular resolution diffusion imaging (HARDI) data,
containing at least one non-zero b-value. Ideally, the b-value used
should be in the region of 2,500 – 3,000 s/mm² (at least for in vivo
human brains), although good results have sometimes been obtained using
b = 1000 s/mm² data.

In addition, this command expects that a suitable single-shell single-tissue
response function has already been computed.
Please refer to the Response function estimation page for details.

Invocation

Constrained Spherical Deconvolution can be performed as:

dwi2fod csd dwi.mif response.txt fod.mif

where:

	dwi.mif is the dwi data set (input)

	response.txt is the response function (input)

	fod.mif is the resulting fODF (output)

Typically, you will also want to use the -mask option to avoid unnecessary computations in non-brain voxels:

dwi2fod csd -mask mask.mif dwi.mif response.txt fod.mif

The resulting WM fODFs can be displayed together with the mean fODF amplitude map using:

mrview fod.mif -odf.load_sh fod.mif

 Multi-shell multi-tissue constrained spherical deconvolution

Multi-shell multi-tissue constrained spherical deconvolution

Introduction

Multi-Shell Multi-Tissue Constrained Spherical Deconvolution (MSMT-CSD)
exploits the unique b-value dependencies of the different macroscopic
tissue types (WM/GM/CSF) to estimate a multi-tissue orientation distribution
function (ODF) as explained in [Jeurissen2014] As it includes separate
compartments for each tissue type, it can produce a map of the WM/GM/CSF signal
contributions directly from the DW data. In addition, the more complete
modelling of the DW signal results in more accurate apparent fiber density
(AFD) measures and more precise fibre orientation estimates at the tissue
interfaces.

User guide

Prerequisites

MSMT-CSD relies on multi-shell high angular resolution diffusion imaging
(HARDI) data, containing multiple b-values. The number of tissue types that can
be resolved is limited by the number of b-values in the data (including
b=0). To resolve the three primary tissue types in the brain (WM, GM & CSF),
the acquisition should contain at least 2 shells along with the b=0 volumes
(i.e. 3 unique b-values).

In addition, this command expects that suitable multi-shell multi-tissue response functions
have already been computed. A number of approaches are available for this,
please refer to the Response function estimation page for details.

Invocation

Multi-shell multi-tissue CSD can be performed as:

dwi2fod msmt_csd dwi.mif wm_response.txt wmfod.mif gm_response.txt gm.mif csf_response.txt csf.mif

where:

	dwi.mif is the dwi data set (input)

	<tissue>_response.txt is the tissue-specific response function (input)

	<tissue>.mif is the tissue-specific ODF (output), typically full FODs for WM and a single scalars for GM and CSF

Note that input response functions and their corresponding output ODFs need to be specified in pairs.

Typically, you will also want to use the -mask option to avoid unnecessary computations in non-brain voxels:

dwi2fod msmt_csd -mask mask.mif dwi.mif wm_response.txt wmfod.mif gm_response.txt gm.mif csf_response.txt csf.mif

RGB tissue signal contribution maps can be obtained as follows:

mrconvert -coord 3 0 wm.mif - | mrcat csf.mif gm.mif - vf.mif

The resulting WM FODs can be displayed together with the tissue signal contribution map as:

mrview vf.mif -odf.load_sh wm.mif

 Fibre density and cross-section - Single-tissue CSD

Fibre density and cross-section - Single-tissue CSD

Introduction

This tutorial explains how to perform fixel-based analysis of fibre density and cross-section [Raffelt2017] using single-tissue spherical deconvolution. We note that high b-value (>2000s/mm2) data is recommended to aid the interpretation of apparent fibre density (AFD) being related to the intra-axonal space. See [Raffelt2012] for more details about single-tissue AFD.

All steps in this tutorial are written as if the commands are being run on a cohort of images, and make extensive use of the foreach script to simplify batch processing. This tutorial also assumes that the imaging dataset is organised with one directory identifying each subject, and all files within identifying the image type (i.e. processing step outcome). For example:

study/subjects/001_patient/dwi.mif
study/subjects/001_patient/wmfod.mif
study/subjects/002_control/dwi.mif
study/subjects/002_control/wmfod.mif

Note

All commands at the start of this tutorial are run from the subjects path. From the step where tractography is performed on the template onwards, we change directory to the template path.

 Fibre density and cross-section - Multi-tissue CSD

Fibre density and cross-section - Multi-tissue CSD

Introduction

This tutorial explains how to perform fixel-based analysis of fibre density and cross-section [Raffelt2017] with fibre orientation distributions (FODs) computed using multi-tissue (3-tissue) CSD variants [Jeurissen2014] [Dhollander2016a]. We note that high b-value (>2000s/mm2) data is recommended to aid the interpretation of apparent fibre density (AFD) being related to the intra-axonal space. See [Raffelt2012] for some details about AFD; though note that the interpretation can be altered for multi-tissue (3-tissue) CSD, depending on the context and tissues in the model.

All steps in this tutorial are written as if the commands are being run on a cohort of images, and make extensive use of the foreach script to simplify batch processing. This tutorial also assumes that the imaging dataset is organised with one directory identifying each subject, and all files within identifying the image type (i.e. processing step outcome). For example:

study/subjects/001_patient/dwi.mif
study/subjects/001_patient/wmfod.mif
study/subjects/002_control/dwi.mif
study/subjects/002_control/wmfod.mif

Note

All commands at the start of this tutorial are run from the subjects path. From the step where tractography is performed on the template onwards, we change directory to the template path.

 Expressing the effect size relative to controls

Expressing the effect size relative to controls

The apparent Fibre Density (FD) and Fibre Density and Cross-section (FDC) are relative measures and have arbitrary units. Therefore the units of abs_effect.mif output from fixelcfestats are not directly interpretable. In a patient-control group comparison, one way to present results is to express the absolute effect size as a percentage relative to the control group mean.

To compute FD and FDC percentage decrease effect size use:

mrcalc fd_stats/abs_effect.mif fd_stats/beta1.mif -div 100 -mult fd_stats/percentage_effect.mif

where beta1.mif is the beta output that corresponds to your control population mean.

Because the Fibre Cross-section (FC) measure is a scale factor it is slightly more complicated to compute the percentage decrease. The FC ratio between two subjects (or groups) tells us the direct scale factor between them.

For example, for a given fixel if the patient group mean FC is 0.7, and control mean is 1.4, then this implies encompassing fibre tract in the patients is half as big as the controls: 0.7/1.4 = 0.5. I.e. this is a 50% reduction wrt to the controls: 1 - (FC_patients/FC_controls)

Because we peform FBA of log(FC), the abs_effect that is output from fixelcfestats is: abs_effect = log(FC_controls) - log(FC_patients) = log(FC_controls/FC_patients). Therefore to get the percentage effect we need to perform 1 - 1/exp(abs_effect):

mrcalc 1 1 fc_stats/abs_effect.mif -exp -div -sub fc_stats/fc_percentage_effect.mif

 Displaying results with streamlines

Displaying results with streamlines

Fixels rendered directly as lines using the fixel plot tool of mrview are
appropriate for viewing 2D slices; however, to better appreciate all the fibre pathways
affected and to visualise the full extent of the results in 3D, it’s also possible to
use a visualisation based on the whole-brain template-derived tractogram [Raffelt2017].

First use tckedit to reduce the whole-brain template tractogram to a sensible
number of streamlines (2 million is quite a lot for certain graphics cards to render
smoothly). This step assumes you have the same folder structure and filenames from the
FBA tutorials. From the template directory:

tckedit tracks_2_million_sift.tck -num 200000 tracks_200k_sift.tck

Map fixel values to streamline points, save them in a “track scalar file”. For example:

fixel2tsf stats_fdc/fwe_pvalue.mif tracks_200k_sift.tck fdc_fwe_pvalue.tsf
fixel2tsf stats_fdc/abs_effect_size.mif tracks_200k_sift.tck fdc_abs_effect_size.tsf

Visualise track scalar files using the tractogram tool in MRview. First load the
streamlines (tracks_200k_sift.tck). Then right click and select ‘colour by (track)
scalar file’. For example you might load the abs_effect_size.tsf file. Then
to dynamically threshold (remove) streamline points by p-value select the “Thresholds”
dropdown and select “Separate Scalar file” to load fwe_pvalue.tsf.

Note that you can also threshold and view all brain fixels by deselecting “crop to slice”
in the fixel plot tool. However it can be harder to appreciate the specific pathways
affected. The downside to viewing and colouring results by streamline, then viewing all
streamlines (uncropped to slice), is that without transparency you only see the colours
on the outside of the significant pathways, where normally the effect size/p-value is most
severe in the ‘core’ of the fibre pathway.

Good examples of both fixel as well as streamline visualisations of FBA results can be
found in [Mito2018a].

 Anatomically-Constrained Tractography (ACT)

Anatomically-Constrained Tractography (ACT)

This page describes the recommended processing steps for taking advantage of the Anatomically-Constrained Tractography (ACT) framework [Smith2012], the image format used, and the commands available for manipulating these data. There are also instructions for anyone looking to make use of alternative tissue segmentation approaches.

Pre-processing steps

DWI distortion correction

For the anatomical information to be incorporated accurately during the tractography reconstruction process, any geometric distortions present in the diffusion images must be corrected. The FSL 5.0 commands topup and eddy are effective in performing this correction based on a reversed phase-encode acquisition, though their interfaces can be daunting. We therefore provide a wrapper script, dwipreproc, which interfaces with these tools to perform correction of multiple forms of image distortion (motion, eddy current and inhomogeneity). Please read the DWI distortion correction using dwipreproc page, and the dwipreproc help page for further details.

Image registration

My personal preference is to register the T1-contrast anatomical image to the diffusion image series before any further processing of the T1 image is performed. By registering the T1 image to the diffusion series rather than the other way around, reorientation of the diffusion gradient table is not necessary; and by doing this registration before subsequent T1 processing, any subsequent images derived from the T1 are inherently aligned with the diffusion image series. This registration should be rigid-body only; if the DWI distortion correction is effective, a higher-order registration is likely to only introduce errors.

DWI pre-processing

Because the anatomical image is used to limit the spatial extent of streamlines propagation rather than a binary mask derived from the diffusion image series, I highly recommend dilating the DWI brain mask prior to computing FODs; this is to make sure that any errors in derivation of the DWI mask do not leave gaps in the FOD data within the brain white matter, and therefore result in erroneous streamlines termination.

Tissue segmentation

So far I have had success with using FSL tools to also perform the anatomical image segmentation; FAST is not perfect, but in most cases it’s good enough, and most alternative software I tried provided binary mask images only, which is not ideal. The 5ttgen script using the fsl algorithm interfaces with FSL to generate the necessary image data from the raw T1 image, using BET, FAST and FIRST. Note that this script also crops the resulting image so that it contains no more than the extracted brain (as this reduces the file size and therefore improves memory access performance during tractography); if you want the output image to possess precisely the same dimensions as the input T1 image, you can use the -nocrop option.

Using ACT

Once the necessary pre-processing steps are completed, using ACT is simple: just provide the tissue-segmented image to the tckgen command using the -act option.

In addition, since the propagation and termination of streamlines is primarily handled by the 5TT image, it is no longer necessary to provide a mask using the -mask option. In fact, for whole-brain tractography, it is recommend that you _not_ provide such an image when using ACT: depending on the accuracy of the DWI brain mask, its inclusion may only cause erroneous termination of streamlines inside the white matter due to exiting this mask. If the mask encompasses all of the white matter, then its inclusion does not provide any additional information to the tracking algorithm.

The 5TT format

When the ACT framework is invoked, it expects the tissue information to be provided in a particular format; this is referred to as the ‘five-tissue-type (5TT)’ format. This is a 4D, 32-bit floating-point image, where the dimension of the fourth axis is 5; that is, there are five 3D volumes in the image. These five volumes correspond to the different tissue types. In all brain voxels, the sum of these five volumes should be 1.0, and outside the brain it should be zero. The tissue type volumes must appear in the following order for the anatomical priors to be applied correctly during tractography:

	Cortical grey matter

	Sub-cortical grey matter

	White matter

	CSF

	Pathological tissue

The first four of these are described in the ACT NeuroImage paper. The fifth can be optionally used to manually delineate regions of the brain where the architecture of the tissue present is unclear, and therefore the type of anatomical priors to be applied are also unknown. For any streamline entering such a region, no anatomical priors are applied until the streamline either exists that region, or stops due to some other streamlines termination criterion.

The following binaries are provided for working with the 5TT format:

	5tt2gmwmi: Produces a mask image suitable for seeding streamlines from the grey matter - white matter interface (GMWMI). The resulting image should then be provided to the tckgen command using the -seed_gmwmi option.

	5tt2vis: Produces a 3D greyscale image suitable for visualisation purposes.

	5ttcheck: Check that one or more input images conform to the 5TT format.

	5ttedit: Allows the user to edit the tissue segmentations. Useful for manually correcting tissue segmentations that are known to be erroneous (e.g. dark blobs in the white matter being labelled as grey matter); see the command’s help page for more details.

Alternative tissue segmentation software

Users who wish to experiment with using tissue segmentations from different software sources are encouraged to do so; if a particular approach is shown to be effective we can add an appropriate script to MRtrix. The 5ttgen script has a second algorithm, freesurfer, which demonstrates how the output of different software can be manipulated to provide the tissue segmentations in the appropriate format. It is however not recommended to actually use this alternative algorithm for patient studies; many midbrain structures are not segmented by FreeSurfer, so the tracking may not behave as desired.

Users who wish to try manipulating the tissue segmentations from some alternative software into the 5TT format may find it most convenient to make a copy of one of the existing algorithms within the lib/mrtrix3/_5ttgen/ directory, and modify accordingly. The 5ttgen script will automatically detect the presence of the new algorithm, and make it available at the command-line.

 Spherical-deconvolution Informed Filtering of Tractograms (SIFT)

Spherical-deconvolution Informed Filtering of Tractograms (SIFT)

SIFT [Smith2013], or ‘Spherical-deconvolution Informed Filtering of
Tractograms’, is a novel approach for improving the quantitative nature
of whole-brain streamlines reconstructions. By producing a reconstruction
where the streamlines densities are proportional to the fibre densities
as estimated by spherical deconvolution throughout the white matter,
the number of streamlines connecting two regions becomes a proportional
estimate of the cross-sectional area of the fibres connecting those two
regions. We therefore hope that this method will attract usage in a
range of streamlines tractography applications.

The actual usage of SIFT can be found in the help page of the
tcksift command. In this page I’ll outline some issues that are
worth thinking about if you are looking to apply this method.

DWI bias field correction

DWI volumes often have a non-negligible B1 bias field, mostly due to
high-density receiver coils. If left uncorrected, SIFT will incorrectly
interpret this as a spatially-varying fibre density. Therefore bias
field correction is highly recommended. We generally estimate the bias
field based on the mean b=0 image, and apply the estimated field to
all DWI volumes. This can currently be achieved using the
dwibiascorrect script, which can employ either the FAST tool in FSL
or the N4 algorithm in ANTS to perform the field estimate.

Number of streamlines pre / post SIFT

In diffusion MRI streamlines tractography, we generate discrete samples
from a continuous fibre orientation field. The more streamlines we
generate, the better our reconstruction of that field. Furthermore, the
greater number of streamlines we generate, the less influence the
discrete quantification of connectivity has on the connectome (e.g.
would rather be comparing 1,000 v.s. 2,000 streamlines to 1 v.s. 2; it’s
less likely to be an artefact of random / discrete sampling). So the
more streamlines the better, at the cost of execution speed & hard drive
consumption.

However we also have the added confound of SIFT. The larger the number
of streamlines that can be fed to SIFT the better, as it can make better
choices regarding which streamlines to keep/remove; but it also
introduces a memory constraint. SIFT can deal with approximately 4-8
million streamlines per GB of RAM (depending on the seeding mechanism
used and the spatial resolution of your diffusion images), so ideally
you’ll want access to dedicated high-performance computing hardware. On
top of this, there’s the issue of how many streamlines to have remaining
in the reconstruction after SIFT; the more streamlines that SIFT
removes, the better the streamlines reconstruction will fit the image
data, but the more likely you are to run into quantisation issues with
the resulting tractogram.

So when you design your image processing pipeline, you need to consider
the compromise between these factors:

	Initially generating a larger number of streamlines is beneficial for
both the quality and the density of the filtered reconstruction, at
the expense of longer computation time (both in generating the
streamlines, and running SIFT), and a higher RAM requirement for
running SIFT.

	Filtering a greater number of streamlines will always produce a
superior fit to the image data, at the expense of having a
lower-density reconstruction to work with afterwards, and a slightly
longer computation time.

Unfortunately there’s no single answer of how many streamlines are
required, as it will depend on the diffusion model, tractography
algorithm, and spatial extent of your target regions / connectome
parcellation granularity. There are a couple of papers / abstracts on
the topic if you look hard enough, but nothing definitive, and nothing
involving SIFT. I would recommend testing using your own data to find
numbers that are both adequate in terms of test-retest variability, and
computationally reasonable.

Personally I have been using a FreeSurfer parcellation (84 nodes),
generating 100 million streamlines and filtering to 10 million using
SIFT (I’m a physicist; I like orders of magnitude). In retrospect, I
would say that when using white matter seeding, filtering by a factor of
10 is inadequate (i.e. the fit of the reconstruction to the data is not
good enough); and with grey matter - white matter interface seeding, a
final number of 10 million is inadequate (the streamlines are mostly
very short, so the appearance of the reconstruction is quite sparse).
Another alternative is ‘dynamic seeding’, which uses the SIFT model
during tractogram generation to only seed streamlines in pathways that
are poorly reconstructed (see the -seed_dynamic option in
tckgen); this provides a better initial estimate, so the percentage
of streamlines that need to be removed in order to achieve a good fit is
reduced. I will leave it to the end user to choose numbers that they
deem appropriate (unless we do a paper on the topic, in which case you
will use our published values without question).

Normalising connection density between subjects

An ongoing issue with our Apparent Fibre Density (AFD) work is how to
guarantee that a smaller FOD in a subject actually corresponds to a
reduced density of fibres. Structural connectome studies have a similar
issue with regards to streamline counts; Even if SIFT is applied, this
only guarantees correct proportionality between different connection
pathways within a subject, not necessarily between subjects. The
simplest and most common solution is simply to use an identical number
of streamlines for every subject in connectome construction; however
this isn’t perfect:

	The distribution of streamlines lengths may vary between subjects,
such that the reconstructed streamlines ‘density’ differs.

	A subject may have decreased fibre density throughout the brain, but
be morphologically normal; if the same number of streamlines are
generated, this difference won’t be reflected in the tractogram
post-SIFT.

	If the white matter volume varies between subjects, but the actual
number of fibres within a given volume is consistent, then the
subject with a larger brain may have an elevated total number of
fibre connections; this would also be missed if the number of
streamlines were fixed between subjects.

It’s also possible to scale by the total white matter volume of each
subject; this would however fail to take into account any differences in
the density of fibres within a fixed volume between subjects.

An alternative approach is to try to achieve normalisation of FOD
amplitudes across subjects, as is done using AFD. This requires a couple
of extra processing steps, namely inter-subject intensity normalisation
and use of a group average response function, which are also far from
error-free. But if this can be achieved, it means that a fixed density
of streamlines should be used to reconstruct a given FOD amplitude
between subjects, and then the cross-sectional area of fibres
represented by each streamline is also identical between subjects; this
can be achieved by terminating SIFT at a given value of the
proportionality coefficient using the -term_mu option. One potential
disadvantage of this approach (in addition to the issues associated with
intensity normalisation) is that using a group average response function
instead of the individual subject response may result in spurious peaks
or incorrect relative volume fractions in the FODs, which could
influence the tracking results.

Ideally, a diffusion model would provide the absolute partial volume of
each fibre population, rather than a proportional quantity: this could
then be used directly in SIFT. However the diffusion models that do
provide such information tend to get the crossing fibre geometry wrong
in the first place…

If anyone has any ideas on how to solve this pickle, let us know.

No DWI distortion correction available

SIFT should ideally be used in conjunction with ACT; by passing the ACT
5TT image to tcksift using the -act option, the command will
automatically derive a processing mask that will limit the contribution
of non-pure-white-matter voxels toward the model. Without this
information, non-pure-white-matter voxels adversely affect both
streamlines tractography, and the construction of the SIFT model.

If you are looking to apply SIFT without correction of DWI geometric
distortions (and therefore without reliable high-resolution
co-registered anatomical image data), these are some points that you may
wish to consider:

	The spatial extent of the DWI mask may have a large influence on your
streamlines tractography results. Therefore greater care should
perhaps be taken to validate this mask, including manual editing if
necessary.

	It is possible to manually provide a processing mask to tcksift
using the -proc_mask option. If users are capable of
heuristically generating an approximate white matter partial volume
image from the DWI data alone, this may be appropriate information to
provide to the SIFT model.

Use of SIFT for quantifying pathways of interest

In some circumstances, researchers may be interested in the connection
density of one or two specific pathways of interest, rather than that of
the whole brain. SIFT is still applicable in this scenario; however the
SIFT algorithm itself is only applicable to whole-brain fibre-tracking
data. Therefore, the workflow in this scenario should be: * Generate a
whole-brain tractogram; * Apply SIFT; * Extract the pathway(s) of
interest using tckedit. * Get the streamline count using
tckinfo.

The SIFT algorithm is not directly applicable to targeted tracking
data. The underlying biophysical model in SIFT assumes that the
estimated density of each fibre population in every voxel of the image
should be proportionally reconstructed by streamlines; if only a subset
of pathways in the brain are permitted to be reconstructed by the
tractography algorithm, this will clearly not be the case, so
appplication of SIFT in this instance will provide erroneous results.

 Structural connectome construction

Structural connectome construction

Included in this new version of MRtrix are some useful tools for
generating structural connectomes based on streamlines tractography.
Here I will describe the steps taken to produce a connectome, and some
issues that should be taken into consideration. Note that I will not
be going into appropriate parcellations or network measures or anything
like that; once you’ve generated your connectomes, you’re on your own.

Preparing a parcellation image for connectome generation

Parcellations are typically provided as an integer image, where each
integer corresponds to a particular node, and voxels where there is no
parcellation node have a value of 0. However, for all of the
parcellation schemes I’ve looked at thus far, the values used for the
nodes do not increase monotonically from 1, but rather have some
non-linear distribution; a text file (or ‘lookup table’) is then
provided that links node indices to structure names. This is however
undesirable for connectome construction; it would be preferable for the
node indices to increase monotonically from 1, so that each integer
value corresponds to a row/column position in the connectome matrix.

This functionality is provided in the command labelconvert. It takes
as its input a parcellation image that has been provided by some other
software package, and converts the label indices; this is done so
that the code that actually generates the connectome can be ‘dumb and
blind’, i.e. the integer values at the streamline endpoints correspond
to the row & column of the connectome matrix that should be incremented.
In addition, this processing chain design provides flexibility in terms
of both the source of the parcellation data, and the way in which the
user wishes to customise the layout of their connectome.

Please consult the tutorial labelconvert: Explanation & demonstration for a guide on
how to use the labelconvert command.

Generating the connectome

The command tck2connectome is responsible for converting the
tractogram into a connectome matrix, based on the provided parcellation
image. By default, the streamline count is used as the connectivity
metric; run tck2connectome -help to see alternative heuristics /
measures.

A factor in structural connectome production commonly overlooked or not
reported in the literature is the mechanism used to assign streamlines
to grey matter parcels. If done incorrectly this can have a large
influence on the resulting connectomes. This is one aspect where
Anatomically-Constrained Tractography (ACT) really shines; because streamlines can only terminate precisely at the grey matter -
white matter interface, within sub-cortical grey matter, or at the
inferior edge of the image, this assignment becomes relatively trivial.
The default assignment mechanism is a radial search outwards from the
streamline termination point, out to a maximum radius of 2mm; and the
streamline endpoint is only assigned to the first non-zero node index.
If you do not have the image data necessary to use the ACT framework,
see the ‘No DWI distortion correction available’ section below.

SIFT and the structural connectome

If you are generating structural connectomes, you should be using
Spherical-deconvolution Informed Filtering of Tractograms (SIFT).

Extracting pathways of interest from a connectome

The command connectome2tck can be used to extract specific
connections of interest from a connectome for further interrogation or
visualisation. Note that since the resulting connectome matrix does not
encode precisely which parcellation node pair each streamline was
assigned to, the streamlines are re-assigned to parcellation nodes as
part of this command. Run connectome2tck -help to see the various
ways in which streamlines may be selected from the connectome.

Also: Beware of running this command on systems with distributed network
file storage. This particular command uses an un-buffered file output
when writing the streamlines files, which re-opens the output file and
writes data for individual streamlines at a time (necessary as many
files may be generated at once); such systems tend to be optimised for
large-throughput writes, so this command may cause performance issues.

No DWI distortion correction available

If you can’t perform DWI susceptibility distortion correction, it
severely limits how accurately you can estimate the structural
connectome. If this is the case for you, below is a few points that are
worth considering.

Non-linear registration

Rather than actually correcting the DWI geometric distortions, some
people try to do a non-linear registration between DWI and T1 images. In
general I’m against this: the registration is fairly ill-posed due to
the differing contrasts, and an off-the-shelf non-linear registration
will have too many degrees of freedom. Pursue at your own risk.

Grey matter parcellation

With good spatial alignment, parcellations that highlight only the
cortial ribbon (e.g. FreeSurfer) are highly accurate and effective, and
the assignment of streamlines to those parcellations will also be robust
if ACT is used. But without these, residual registration errors may have
a large influence, and assigning streamlines to parcellations only as
thick as the cortex may also be erroneous (streamlines may terminate
prior to the parcel, or travel through and extend well beyond it). A
parcellation with large-volume nodes that is based on atlas registration
(e.g. AAL) is likely more appropriate in this case.

Assignment of streamlines to parcellation nodes

Without ACT, streamlines will terminate pretty much anywhere within the
DWI brain mask. Not only this, but they may traverse multiple
parcellation nodes, turn around within a node and traverse elsewhere,
terminate just prior to entering a node, all sorts of weirdness. I have
provided a few assignment mechanisms that you can experiment with - run
tck2connectome -help to see the list and parameters for each.
Alternatively if anyone has a better idea for how this could potentially
be done, I’d love to hear it.

 Using the connectome visualisation tool

Using the connectome visualisation tool

The connectome tool bar in MRtrix3 has been designed from scratch, with
the intention of providing a simple, data-driven mechanism for visually
assessing individual connectomes as well as the results of network-based
group statistics. The interface may therefore vary considerably from
other connectome visualisation packages, and may be intimidating for new
users who simply want to ‘see the connectome’. I hope I can convince you
in this tutorial that the design of this tool allows you, the user, to
dictate exactly how you want to visualise the connectome, rather than
being forced to conform to a particular prior expectation of how such
things should be visualised.

Initialising the tool

My suspicion is that new users will load the tool, and immediately
think: ‘Where do I load my connectome?’. Well, let’s take a step
backwards. If you were to give the software a connectome matrix, with no
other data, there would be no way to visualise that connectome in the
space of an MR image: the software has no information about the spatial
locations of the nodes upon which that connectome is based. So the first
step is actually to load an image to provide the tool with this
information, using the “Node image” button at the top of the toolbar.
The desired image is the output of the labelconvert command, as
detailed in the Structural connectome construction guide: the
tool uses this image to localise each parcel in 3D space in preparation
for visualisation. Alternatively, you can load the relevant parcellation
image from the command-line when you first run mrview, using the
-connectome.init option.

Attention

If you still do not see anything in the mrview main window, this is
likely because you have not yet opened a primary image in mrview. This
is currently necessary for mrview to correctly set up the camera
positioning. The easiest solution is to open your parcellation image not
only to initialise the connectome tool, but also as a standard image in
mrview; then simply hide the main image using the ‘View’ menu.

 labelconvert: Explanation & demonstration

labelconvert: Explanation & demonstration

The labelconvert (previously labelconfig) step in
Structural connectome construction has proven to be a hurdle for
many. It may be a ‘unique’ step in so far as that other software
packages probably deal with this step implicitly, but in MRtrix we
prefer things to be explicit and modular. So here I’ll go through an
example to demonstrate exactly what this command does.

Worked example

For this example, let’s imagine that we’re going to generate a
structural connectome for Bert, the quintessential FreeSurfer subject.
Also, we’re going to generate the connectome based on the
Desikan-Killiany atlas. The default FreeSurfer pipeline provides the
volumetric image aparc+aseg.mgz; this is the file that will be used to
define the nodes of our connectome.

[image: labelconvert_before]

Looking at the raw image itself, each node possesses a particular
intensity, corresponding to a particular integer value. If we focus on
the superior frontal gyrus in the right hemisphere, we can see that the
image intensity is 2028 for this structure.

This immediately presents a problem for constructing a connectome: if
any streamline encountering this region were written to row/column 2028,
our connectome would be enormous, and consist mostly of zeroes (as most
indices between 1 and 2028 do not correspond to any structure). Therefore,
what we’d prefer is to map the unique integer index of this structure to
a particular row/column index of the connectome; this should be done in
such a way that all structures of interest have a unique integer value
between 1 and N, where N is the number of nodes in the connectome.

Now looking at the file FreeSurferColorLUT.txt provided with FreeSurfer,
we see the following:

...
2026 ctx-rh-rostralanteriorcingulate 80 20 140 0
2027 ctx-rh-rostralmiddlefrontal 75 50 125 0
2028 ctx-rh-superiorfrontal 20 220 160 0
2029 ctx-rh-superiorparietal 20 180 140 0
2030 ctx-rh-superiortemporal 140 220 220 0
...

This gives us a meaningful name for this structure based on the
integer index. It also gives us some colour information, but let’s not
worry about that for now.

Our goal then is to determine a new integer index for this structure,
that will determine the row/column of our connectome matrix that this
structure corresponds to. This is dealt with by mapping the structure
indices of this lookup table to a new lookup table. For this example,
let’s imagine that we’re using the default MRtrix lookup table for the
FreeSurfer Desikan-Killiany atlas segmentation: this is provided at
shared/mrtrix3/labelconvert/fs_default.txt.Examining this file in detail,
we see the following:

...
74 R.RACG ctx-rh-rostralanteriorcingulate 80 20 140 255
75 R.RMFG ctx-rh-rostralmiddlefrontal 75 50 125 255
76 R.SFG ctx-rh-superiorfrontal 20 220 160 255
77 R.SPG ctx-rh-superiorparietal 20 180 140 255
78 R.STG ctx-rh-superiortemporal 140 220 220 255
...

(This file is in a slightly different format to
FreeSurferColorLUT.txt; don’t worry about this for the time being)

This file contains the same structure name as the FreeSurfer look-up
table, but it is assigned a different integer index (76)! What’s going
on?

The following is what the labelconvert command is actually going to
do under the bonnet, using these two lookup table files:

	Read the integer value at each voxel of the input image

	Convert the integer value into a string, based on the input lookup
table file (FreeSurferColorLUT.txt)

	Find this string in the output lookup table file
(fs_default.txt)

	Write the integer index stored in the output lookup table file
for this structure to the voxel in the output image

This is what the actual command call looks like:

labelconvert $FREESURFER_HOME/subjects/bert/mri/aparc+aseg.mgz $FREESURFER_HOME/FreeSurferColorLUT.txt ~/mrtrix3/src/connectome/config/fs_default.txt bert_parcels.mif

And this is what the resulting image looks like:

[image: labelconvert_after]

The integer labels of the underlying grey matter parcels have been
converted from the input lookup table to the output lookup table (hence
the name labelconvert). They now increase monotonically from 1 to the
maximum index, with no ‘gaps’ (i.e. ununsed integer values) in between.
Therefore, when you construct your connectome using tck2connectome,
the connectome matrix will only be as big as it needs to be to store all
of the node-node connectivity information.

Design rationale

Making this step of re-indexing parcels explicit in connectome
construction has a few distinct advantages:

	You can use parcellations from any software / atlas: just provide the
structure index / name lookup table that comes with whatever
software / atlas provides the parcellation, and define an appropriate
target lookup table that defines which index you want each structure to
map to.

	tck2connectome can be ‘dumb and blind’: it reads the integer indices
at either end of the streamline, and that’s the row/column of the connectome
matrix that needs to be incremented.

	You can have your grey matter parcels appear in any order in your
matrices: just define a new lookup table file. Doing this prior to connectome
construction is less likely to lead to heartache than re-ordering the rows
and columns in e.g. Matlab, where you may lose track of which matrices have
been re-ordered and which have not.

	You can remove structures from the connectome, or merge multiple structures
into a single parcel, just by omitting or duplicating indices appropriately in
the target lookup table file.

	Looking at your matrices and need to find out what structure corresponds to
a particular row/column? Just look at the config file!

Obviously if your parcellation image already has node indices that increase
monotonically from 1, and you’re happy enough with the numerical order of the
nodes, you don’t actually need to use the labelconvert step at all.

Custom design connectomes

Some notes for anybody that wishes to define their own configuration
files (either for re-ordering nodes, changing selection of nodes, or
using parcellations from alternative sources):

	If you wish to omit nodes from your connectome (e.g. the cerebellar
hemispheres), you may be better off making these nodes the largest
indices in your connectome, but then cropping them from the connectome
matrices retrospectively, rather than omitting them from the parcellation
image entirely: If you were to do the latter, streamlines that would
otherwise be assigned to your unwanted nodes may instead be
erroneously assigned to the nearest node that is part of your
connectome (exactly what happens here will depend on the
streamline-node assignment mechanism used).

	The command labelconvert is capable of reading in look-up
tables in a number of formats. If you wish to define your own lookup
table, you will need to conform to one of these formats in order for
MRtrix commands to be able to import it. If you are using an atlas
where the look-up table does not conform to any of these formats (and
hence MRtrix refuses to import it), you can either manually manipulate
it into a recognized format, or if it is likely that multiple users will
be using that parcellation scheme, we may choose to add a parser to the
MRtrix code: contact the developers directly if this is the case.

 Global tractography

Global tractography

Introduction

Global tractography is the process of finding the full track
configuration that best explains the measured DWI data. As opposed to
streamline tracking, global tractography is less sensitive to noise, and
the density of the resulting tractogram is directly related to the data
at hand.

As of version 3.0, MRtrix supports global tractography using a
multi-tissue spherical convolution model, as introduced in [Christiaens2015].
This method extends the method of [Reisert2011] to multi-shell response
functions, estimated from the data, and adopts the multi-tissue model
presented in [Jeurissen2014] to account for partial voluming.

User guide

Prerequisites

This global tractography implementation relies on multi-shell high angular
resolution diffusion imaging (HARDI) data, containing at least 3 unique
b-values (i.e 2 shells along with the b=0 volumes).

In addition, this command expects that suitable multi-shell multi-tissue
response functions have already been computed. A number of approaches are
available for this, please refer to the Response function estimation
page for details.

Invocation

For multi-shell DWI data, the most common use will be:

tckglobal dwi.mif wm_response.txt -riso csf_response.txt -riso gm_response.txt -mask mask.mif -niter 1e9 -fod fod.mif -fiso fiso.mif tracks.tck

In this example, dwi.mif is the input dataset, including the
gradient table, and tracks.tck is the output tractogram. wm_response.txt,
gm_response.txt and csf_response.txt are the corresponding tissue
response functions (as estimated in a previous
Response function estimation step).
Optional output images fod.mif and fiso.mif contain the
predicted WM fODF and isotropic tissue fractions of CSF and GM
respectively, estimated as part of the global optimization and thus
affected by spatial regularization.

Parameters

-niter: The number of iterations in the optimization. Although the
default value is deliberately kept low, a full brain reconstruction will
require at least 100 million iterations.

-lmax: Maximal order of the spherical harmonics basis.

-length: Length of each track segment (particle), which determines
the resolution of the reconstruction.

-weight: Weight of each particle. Decreasing its value by a factor
of two will roughly double the number of reconstructed tracks, albeit at
increased computation time.

Particle potential -ppot: The particle potential essentially
associates a cost to each particle, relative to its weight. As such,
we are in fact trying to reconstruct the data as well as possible, with
as few particles as needed. This ensures that there is sufficient
proof for each individual particle, and hence avoids that a bit of
noise in the data spurs generation of new (random) particles. Think of
it as a parameter that balances sensitivity versus specificity. A higher
particle potential requires more proof in the data and therefore leads
to higher specificity; a smaller value increases sensitivity.

Connection potential -cpot: The connection potential is the driving
force for connecting segments and hence building tracks. Higher values
increase connectivity, at the cost of increased invalid connections.

Ancillary outputs

-fod: Outputs the predicted fibre orientation distribution function
(fODF) as an image of spherical harmonics coefficients.
This fODF is estimated as part of the global track optimization, and
therefore incorporates the spatial regularization that it imposes.
Internally, the fODF is represented as a discrete sum of apodized point
spread functions (aPSF) oriented along the dire