MRtrix Documentation
Release 3.0

MRtrix contributors

Dec 14, 2022

Install

5

Getting help
Key features
Installation
Commands

Table of Contents

Bibliography

Index

11

385

389

MRtrix Documentation, Release 3.0

MRtrix3 provides a large suite of tools for image processing, analysis and visualisation, with a focus on the analysis
of white matter using diffusion-weighted MRI ([Tournier2019]). Features include the estimation of fibre orientation
distributions using constrained spherical deconvolution ([Tournier2004]; [Tournier2007]; [Jeurissen2014]), a proba-
bilisitic streamlines algorithm for fibre tractography of white matter ([Tournier2012]), fixel-based analysis of apparent
fibre density and fibre cross-section ([Raffelt2012]; [Raffelt2015]; [Raffelt2017]), quantitative structural connectiv-
ity analysis ([Smith2012]; [Smith2013]; [Smith2015]; [Christiaens2015]), and non-linear spatial registration of fibre
orientation distribution images ([Raffelt2011]). MRtrix3 also offers comprehensive visualisation tools in mrview.

These applications have been written from scratch in C++, using the functionality provided by Eigen, and Qt. The
software is currently capable of handling DICOM, NIfTI and AnalyseAVW image formats, amongst others. The
source code is distributed under the Mozilla Public License.

Use of the MRtrix3 software package in published works should be accompanied by the following citation:

J.-D. Tournier, R. E. Smith, D. Raffelt, R. Tabbara, T. Dhollander, M. Pietsch, D. Christiaens, B. Jeurissen,
C.-H. Yeh, and A. Connelly. MRtrix3: A fast, flexible and open software framework for medical image
processing and visualisation. Neurolmage, 202 (2019), pp. 116-37.

Tip: Make sure to use the version of this documentation that matches your version of this software. You can select
the version on the lower left of this page.

Install 1

http://eigen.tuxfamily.org/
http://qt-project.org/
http://mozilla.org/MPL/2.0/

MRtrix Documentation, Release 3.0

2 Install

CHAPTER 1

Getting help

There are a variety of sources of help and information to bring you up to speed with MRtrix3. These include:

the main MRtrix3 documentation (these pages);

our Introduction to the Unix command-line if you’re unfamiliar with the terminal (though you’ll readily find
plenty of excellent tutorials online);

our Community Forum for support and general discussion about the use of MRtrix3 — you can address all
MRtrix3-related queries there, using your GitHub or Google login to post questions.

our Frequently Asked Questions, hosted as a user-editable wiki category within our forum.

https://mrtrix.readthedocs.org/
https://command-line-tutorial.readthedocs.io/
http://community.mrtrix.org/
http://community.mrtrix.org/c/wiki

MRtrix Documentation, Release 3.0

4 Chapter 1. Getting help

CHAPTER 2

Key features

While MRtrix3 is primarily intended to be used for the analysis of diffusion MRI data, at its fundamental level it is
designed as a general-purpose library for the analysis of any type of MRI data. As such, it provides a back-end to
simplify a large number of operations, many of which will be invisible to the end-user. Specifically, MRtrix3 features:

* a consistent command-line interface, with inline documentation for each command,

* universal import/export capabilities when accessing image data across all MRtrix3 applications;

* Multi-file numbered image support to load multiple images as a single multi-dimensional dataset;

« efficient use of Unix Pipelines for complex workflows;

* high performance on modern multi-core systems, with multi-threading used extensively throughout MRtrix3;
* available on all common modern operating systems (GNU/Linux, MacOSX, Windows);

* aconsistent Coordinate system with most operations performed in scanner/world coordinates where possible.

MRtrix Documentation, Release 3.0

6 Chapter 2. Key features

CHAPTER 3

Installation

MRtrix3 runs on GNU/Linux, macOS, Microsoft Windows platforms, and other Unix platforms. For most users, the

simplest way to install MRtrix3 is to use one of the pre-compiled packages. For details, please refer the main MRtrix
website.

If the precompiled packages are not available, we provide specific instructions for building the software from source.

This is normally a simple process, but does require more compute resources and expertise. See the relevant pages for
details.

https://www.mrtrix.org/download/
https://www.mrtrix.org/download/

MRtrix Documentation, Release 3.0

8 Chapter 3. Installation

CHAPTER 4

Commands

The MRtrix3 software package includes a suite of tools for image analysis and visualisation. With the exception
of mrview and shview, all MRtrix3 executables are designed to be run via a terminal using a consistent command-
line interface. While many of the tools and features are discussed within tutorials found in this documentation, a
comprehensive List of MRtrix3 commands can be found in the reference section. These lists provide links to the help
page (manual) for each executable, which can also be accessed by typing the —he 1p option after the executable name
on the terminal.

Tip: Some proficiency with the Unix command-line is required to make the best use of this software. There are
many resources online to help you get started if you are not already familiar with it. We also recommend our own
Introduction to the Unix command-line, which was written with a particular focus on the types of use that are common
when using MRtrix3.

https://command-line-tutorial.readthedocs.io/

MRtrix Documentation, Release 3.0

10 Chapter 4. Commands

CHAPTER B

Table of Contents

5.1 Before you install

5.1.1 Acknowledging this work

If you wish to include results generated using the MRtrix3 package in a publication, please include a line such as the
following to acknowledge the work of our developers:

* Processing was performed using the MRtrix3 package (Tournier et al., 2019).

J.-D. Tournier, R. E. Smith, D. Raffelt, R. Tabbara, T. Dhollander, M. Pietsch, D. Christiaens, B. Jeurissen, C.-H.
Yeh, and A. Connelly. MRtrix3: A fast, flexible and open software framework for medical image processing and
visualisation. Neurolmage, 202 (2019), pp. 116-37.

Note: Many individual methods included in the MRtrix3 software have been published in scientific journals and
should be cited as such. Please check the references listed on the specific application’s page to ensure the appropriate
reference is included, so that the scientists behind all methods receive proper acknowledgement.

5.1.2 Warranty
The software described in this manual has no warranty, it is provided “as is”. It is your responsibility to validate the

behavior of the routines and their accuracy using the source code provided, or to purchase support and warranties from
commercial redistributors. Consult the Mozilla Public License for further details.

5.1.3 License

MRtrix is free software: you can redistribute it and/or modify it under the terms of the Mozilla Public License as
published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version.

11

https://doi.org/10.1016/j.neuroimage.2019.116137
http://mozilla.org/MPL/2.0/
http://mozilla.org/MPL/2.0/
http://www.fsf.org/

MRtrix Documentation, Release 3.0

MRtrix is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Mozilla Public License
for more details. You should have received a copy of Mozilla Public License along with MRtrix. If not, see http:
/lmozilla.org/MPL/2.0/.

Tip: Some proficiency with the Unix command-line is required to make the best use of this software. There are
many resources online to help you get started if you are not already familiar with it. We also recommend our own
Introduction to the Unix command-line, which was written with a particular focus on the types of use that are common
when using MRtrix3.

5.2 Installing MRtrix3

By far the quickest and simplest way to install MR¢rix3 is to use one of the pre-compiled packages. These allow you
to get started straight away, with all dependencies included.

Packages of various types are available for the three main platforms (GNU/Linux, macOS, Microsoft Windows). For
the latest information, please refer to the main MRtrix website.

q/\RJ[I’iX?)

5.3 Building MRtrix3 from source

The instructions below describe the process of compiling and installing MRtrix3 from source. Please consult the
MRtrix3 forum if you encounter any issues.

Warning: These instructions are for more advanced users who wish to install very specific versions of MRtrix3,
or make their own modifications. Most users will find it much easier to install one of the pre-compiled packages
available for their platform from the main MRtrix3 website.

5.3.1 Install Dependencies

To install MRtrix3, you will need to have a number of dependencies available on your system, listed below. These can
be installed in a number of ways, depending on your specific platform. We provide specific instructions for doing so
for GNU/Linux, macOS and Microsoft Windows in the subsequent sections.

Required dependencies:
¢ a C++11 compliant compiler (GCC version >= 5, clang);
 Python version >= 2.7 (>= 3 strongly recommended due to deprecation of Python2);
* The zIib compression library;

» FEigen version >= 3.2 (>= 3.3 recommended);

12 Chapter 5. Table of Contents

http://mozilla.org/MPL/2.0/
http://mozilla.org/MPL/2.0/
http://mozilla.org/MPL/2.0/
http://mozilla.org/MPL/2.0/
https://command-line-tutorial.readthedocs.io/
https://www.mrtrix.org/download/
https://www.mrtrix.org/download/
http://community.mrtrix.org/
https://www.mrtrix.org/download/
https://www.mrtrix.org/download/
https://en.wikipedia.org/wiki/C%2B%2B11
https://www.python.org/
https://www.python.org/doc/sunset-python-2/
http://www.zlib.net/
http://eigen.tuxfamily.org

MRtrix Documentation, Release 3.0

e Qt version >= 5.5 (but not Qt 6) [GUI components only],
and optionally:
e libTIFF version >= 4.0 (for TIFF support);
e FFTW version >= 3.0 (for improved performance in certain applications, currently only mrdegibbs);
* libpng (for PNG support).

The instructions below list the most common ways to install these dependencies on Linux, macOS, and Windows
platforms.

Warning: To run the GUI components of MRtrix3 (mrview & shview), you will also need an OpenGL 3.3
compliant graphics card and corresponding software driver.

Note that this implies you cannot run the GUI components over a remote X11 connection, since it can’t support
OpenGL 3.3+ rendering. The most up-to-date recommendations in this context can be found in the relevant Wiki
entry on the MRtrix3 community forum.

Linux

The installation procedure will depend on your system. Package names may changes between distributions, and
between different releases of the same distribution. We provide commands to install the required dependencies on
some of the most common Linux distributions below.

Warning: The commands below are suggestions based on what has been reported to work in the past, but may
need to be tailored for your specific distribution. See below for hints on how to proceed in this case.

¢ Ubuntu Linux (and derivatives, e.g. Linux Mint):

sudo apt-get install git g++ python libeigen3-dev zliblg-dev libgtb5opengl5-dev,,
—1libgt5svgb-dev libgll-mesa-dev libfftw3-dev libtiff5-dev libpng-dev

Note: On Ubuntu 20.04 and newer, you’ll to replace python in the line above with python-is-python3
(or python-is-python?2 if you’re still using version 2.7, which is now very deprecated).

¢ RPM-based distros (Fedora, CentOS):

sudo yum install git g++ python eigen3-devel zlib-devel libgt5-devel libgll-mesa-
—dev fftw-devel libtiff-devel libpng-devel

On Fedora 24, this is reported to work:

sudo yum install git gcc-c++ python eigen3-devel zlib-devel gt-devel mesa-1ibGL-
—devel fftw-devel libtiff-devel libpng-devel

e Arch Linux:

sudo pacman -Syu git python gcc zlib eigen gt5-svg fftw libtiff libpng

You may find that your package installer is unable to find the packages listed, or that the subsequent steps fail due to
missing dependencies (particularly the . /configure command). In this case, you will need to search the package
database and find the correct names for these packages:

5.3. Building MRtrix3 from source 13

http://www.qt.io/
http://www.libtiff.org/
http://www.fftw.org/
http://www.libpng.org
https://en.wikipedia.org/wiki/OpenGL
http://community.mrtrix.org/t/remote-display-issues/2547
http://community.mrtrix.org/t/remote-display-issues/2547
http://community.mrtrix.org

MRtrix Documentation, Release 3.0

* git;

* an appropriate C++ compiler (e.g. GCC 5 or above, or clang);

* Python version >= 2.7 (version >= 3.0 strongly recommended);

* the z1ib compression library and its corresponding development header/include files;
* the Eigen template library (only consists of development header/include files);

* Qt version >= 5.5, its corresponding development header/include files, and the executables required to compile
the code. Note that this can be broken up into several packages, depending on how your distribution has chosen
to distribute this. You will need to get those that provide these Qt modules: Core, GUI, OpenGL, SVG, and the
gmake, rcc & moc executables (note these will probably be included in one of the other packages);

* [optional] the TIFF library and utilities version >= 4.0, and its corresponding development header/include files;
* [optional] the FFTW library version >= 3.0, and its corresponding development header/include files;

* [optional] the PNG library and its corresponding development header/include files.

Warning: Compilers included in older distributions, e.g. Ubuntu 12.04, may not be capable of compiling MRtrix3,
as it requires C++11 support. A solution is to install a newer compiler as provided by an optional addon package
repository, e.g. the Ubuntu toolchain PPA. Once the relevant repository has been added to the distribution’s package
manager, you’ll need to update the local list of available packages (e.g. sudo apt—get update), followed by
explicit installation of the newer version of the compiler (e.g. sudo apt-get install g++-7).

Note: In many instances where MRtrix3 dependencies are installed in some non-standard fashion, the MRtrix3
configure script will not be able to automatically identify the location and/or appropriate configuration of those
dependencies. In such cases, the MRtrix3 configure script provides a range of environment variables that can be set
by the user in order to provide this information. Executing configure -help provides a list of such environment
variables; in addition, if the script is unable to detect or utilise a particular dependency properly, it will also provide a
suggestion of which environment variable may need to be set in a manner tailored for your particular system in order
to provide it with the information it needs to locate that dependency.

See also:

If for whatever reasons you need to install MR¢rix3 on a system with older dependencies, and you are unable to update
the software (e.g. you want to run MRtrix3 on a centrally-managed HPC cluster), you can as a last resort use the
procedures described in this community forum post.

macOS

1. Update macOS to version 10.10 (Yosemite) or higher (OpenGL 3.3 will typically not work on older versions);
2. Install XCode from the App Store;
3. Install Eigen3 and Qt5.

There are several alternative ways to do this, depending on your current system setup. The most convenient is
probably to use your favorite package manager (Homebrew or MacPorts), or install one of these if you haven’t
already.

If you find your first attempt doesn’t work, please resist the temptation to try one of the other options: in our
experience, this only leads to further conflicts, which won’t help installing MRtrix3 and will make things more
difficult to fix later. Once you pick one of these options, we strongly recommend you stick with it, and consult
the community forum if needed for advice and troubleshooting.

14 Chapter 5. Table of Contents

https://launchpad.net/~ubuntu-toolchain-r/+archive/ubuntu/test
https://community.mrtrix.org/t/standalone-installation-on-linux/3549
https://apps.apple.com/us/app/xcode/id497799835?mt=12
http://brew.sh/
http://macports.org/
http://community.mrtrix.org

MRtrix Documentation, Release 3.0

¢ With Homebrew:

— Install Eigen3: brew install eigen

Install Qt5: brew install gt5

Install pkg-config: brew install pkg-config
— Add Qt’s binaries to your path: export PATH= brew —-prefix’/opt/qgt5/bin:S$PATH
* With MacPorts:

Install Eigen3: port install eigen3

Install Qt5: port install gth

Install pkg-config: port install pkgconfig

Add Qt’s binaries to your path: export PATH=/opt/local/libexec/gt5/bin:$PATH

* As a last resort, you can manually install Eigen3 and Qt5: You can use this procedure if you have good
reasons to avoid the other options, or if for some reason you cannot get either Homebrew or MacPorts to
work.

Install Eigen3: download and extract the source code from eigen.tuxfamily.org

Install Qt5: download and install the latest version from http://download.qt.io/official_releases/qt/

You need to select the file labelled gt —opensource-mac—-x64—-clang-5.X.X.dmg. You can
choose to install it system-wide or just in your home folder, whichever suits; just remember where
you installed it.

Make sure Qt5 tools are in your PATH (edit as appropriate): export PATH=/path/to/Qt5/5.
X.X/clang_64/bin:S$PATH

Set the CFLAG variable for Eigen (edit as appropriate): export EIGEN_CFLAGS="-isystem
/where/you/extracted/eigen" Make sure not to include the final /Eigen folder in the path
name: use the folder in which it resides instead!

4. Install TIFF, FFTW and PNG libraries.
* With Homebrew:
— Install TIFF: brew install libtiff
— Install FFTW: brew install fftw
— Install PNG: brew install libpng
* With MacPorts:
— Install TIFF: port install tiff
— Install FFTW: port install fftw-3

— Install PNG: port install libpng

Windows

All of these dependencies are installed below by the MSYS2 package manager.

Warning: When following the instructions below, use the ‘MinGW-w64 Win64 shell’; ‘MSYS2 shell’ and
‘MinGW-w64 Win32 shell” must be avoided, as they will yield erroneous behaviour that is difficult to diagnose if
used accidentally.

5.3. Building MRtrix3 from source 15

http://brew.sh/
http://macports.org/
http://brew.sh/
http://macports.org/
http://eigen.tuxfamily.org/
http://download.qt.io/official_releases/qt/
http://brew.sh/
http://macports.org/

MRtrix Documentation, Release 3.0

Warning: At time of writing, this MSYS2 system update will give a number of instructions, including: terminat-
ing the terminal when the update is completed, and modifying the shortcuts for executing the shell(s). Although
these instructions are not as prominent as they could be, it is vital that they are followed correctly!

1. Download and install the most recent 64-bit MSYS?2 installer from http://msys2.github.io/ (msys2-x86_64-
* exe), and following the installation instructions from the MSYS2 wiki.

2. Run the program ‘MinGW-w64 Win64 Shell’ from the start menu.

3. Update the system packages, as per the instructions:

pacman —Syuu

Close the terminal, start a new ‘MinGW-w64 Win64 Shell’, and repeat as necessary until no further packages
are updated.

4. From the ‘MinGW-w64 Win64 Shell’ run:

pacman -S git python pkg-config mingw-w64-x86_64-gcc mingw-w64-x86_64-eigen3 |
—mingw-w64-x86_64-9gt5 mingw-w64-x86_64-fftw mingw-w64-x86_64-1ibtiff mingw-w64-
—~x86_64-1ibpng

Sometimes pacman may fail to find a particular package from any of the available mirrors. If this occurs, you
can download the relevant package from SourceForge: place both the package file and corresponding .sig file
into the /var/cache/pacman/pkg directory, and repeat the pacman call above.

Sometimes pacman may refuse to install a particular package, claiming e.g.:

error: failed to commit transaction (conflicting files)
mingw-w64-x86_64-eigen3: /mingw64 exists in filesystem
Errors occurred, no packages were upgraded.

Firstly, if the offending existing target is something trivial that can be deleted, this is all that should be required.
Otherwise, it is possible that MSYS2 may mistake a file existing on the filesystem as a pre-existing directory; a
good example is that quoted above, where pacman claims that directory /mingw64 exists, but it is in fact the
two files /mingw64.exe and /mingw64.1ini that cause the issue. Temporarily renaming these two files,
then changing their names back after pacman has completed the installation, should solve the problem.

5.3.2 Git setup

If you intend to contribute to the development of MRtrix3, set up your git environment as per the Git instructions page

5.3.3 Build MRtrix3

1. Clone the MRtrix3 repository:

git clone https://github.com/MRtrix3/mrtrix3.git

or if you have set up your SSH keys (for contributors):

16 Chapter 5. Table of Contents

http://msys2.github.io/
https://github.com/msys2/msys2/wiki/MSYS2-installation
https://github.com/msys2/msys2/wiki/MSYS2-installation#iii-updating-packages
https://sourceforge.net/projects/msys2/files/REPOS/MINGW/x86_64/
https://help.github.com/articles/set-up-git/#setting-up-git

MRtrix Documentation, Release 3.0

git clone git@github.com:MRtrix3/mrtrix3.git

2. Configure the MRtrix3 install:

cd mrtrix3
./configure

If this does not work, examine the ‘configure.log’ file that is generated by this step, it may give clues as to what
went wrong.

3. Build the binaries:

./build

5.3.4 Set up MRtrix3

1. Update the shell startup file, so that the locations of MRtrix3 commands and scripts will be added to your PATH
envionment variable.

If you are not familiar or comfortable with modification of shell files, MRtrix3 now provides a convenience
script that will perform this setup for you (assuming that you are using bash or equivalent interpreter). From
the top level MRtrix3 directory, run the following:

./set_path

2. Close the terminal and start another one to ensure the startup file is read (or just type ‘bash’)
3. Type mrview to check that everything works

4. You may also want to have a look through the List of MRtrix3 configuration file options and set anything you
think might be required on your system.

Note: The above assumes that your shell will read the ~/ .bashrc file at startup time. This is not
always guaranteed, depending on how your system is configured. If you find that the above doesn’t work
(e.g. typing mrview returns a ‘command not found’ error), try changing step 1 to instruct the set_path
script to update PATH within a different file, for example ~/ .bash_profile or ~/.profile,e.g.
as follows:

./set_path ~/.bash_profile

5.3.5 Keeping MRtrix3 up to date

1. You can update your installation at any time by opening a terminal in the MRtrix3 folder, and typing:

git pull
./build

2. If this doesn’t work immediately, it may be that you need to re-run the configure script:

5.3. Building MRtrix3 from source 17

MRtrix Documentation, Release 3.0

’./configure

and re-run step 1 again.

5.4 Deploying MRtrix3

The installation instructions provided in the preceding pages produce a working install for the current user only. There
are many advantages to this:

* no need for admin privileges, either for the initial install (beyond installation of dependencies), or any subsequent
updates;

* users are in control of the precise version of MRtrix3 they are using for their specific projects - no system
updates will interfere with their study.

However, system administrators and software distributors will want to install MRtrix3 in a system-wide location to
make it accessible to all users; and/or to deploy it to other systems without requiring a full rebuild. While MRzrix3
does not provide an explicit command to do this, it is a trivial process:

* build the code
e copy thebin/, 1ib/ and share/ folders together to the desired target location
* set the PATH to point to the bin/ folder.

This can be done any number of ways. The only requirement is that these 3 folders are co-located alongside each
other, so that the executables can find the MRtrix3 shared library, and the scripts can find the requisite python modules.

Note also that this structure is broadly compatible with the Linux Filesystem Hierarchy Standard. It should be perfectly
possible to merge the MRtrix3 bin/, 1ib/ and share/ folders with the system’s existing equivalent locations in
/usr/ or /usr/local/ if desired, in which case there would be no need to explicitly set the PATH (assuming
/usr/binor /usr/local/bin/ are already in the PATH). However, there is no requirement that it be installed
anywhere in particular, and we expect most sysadmins will prefer to place them in a separate location to minimise any
chance of conflict.

Below we provide step-by-step instructions for creating a single tar file that can then be copied to other systems and
extracted in the desired folder:

1. Obtain, configure and build the desired version of MRtrix3:

$ git checkout http://github.com/MRtrix3/mrtrix3.git
$ cd mrtrix3

$./configure

$./build

2. Collate the relevant folders and their contents into a single archive file:

$ tar cvfz mrtrix3.tgz bin/ lib/ share/

3. Copy the resulting mrtrix3 .t gz file over to the target system, into a suitable location., for example (as root):

$ mkdir /usr/local/mrtrix3
$ cp mrtrix3.tgz /usr/local/mrtrix3/

4. Extract the archive in this location (as root):

$ cd /usr/local/mrtrix3/
$ tar xvfz mrtrix3.tgz

18 Chapter 5. Table of Contents

https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard

MRtrix Documentation, Release 3.0

Assuming no errors were generated, you can safely remove the mrtrix3. tgz file at this point.

5. Add the newly-extracted bin/ folder to the PATH, e.g.:

$ export PATH=/usr/local/mrtrix3/bin:"SPATH"

At which point MRtrix3 command should be available to the corresponding user.

Note that the above command will only add MRtrix3 to the PATH for the current shell session. You would
need to add the equivalent line to your users’ startup scripts, using whichever mechanism is appropriate for your
system.

5.5 HPC clusters installation

These instructions outline a few issues specific to high-performance computing (HPC) systems.

5.5.1 Installing MRtrix3

Most HPC clusters will run some flavour of GNU/Linux and hence a cluster administrator should be able to follow
the steps outlined to Building MRtrix3 from source. In particular, if your sysadmin is able to install the required
dependencies (the preferred option), you should be able to subsequently Build MRtrix3.

However, it is not uncommon for HPC systems to run stable, and hence relatively old distributions, with outdated de-
pendencies. This is particularly problematic since MRtrix3 relies on recent technologies (C++11, OpenGL 3.3), which
are only available on recent distributions. There is therefore a good chance these dependencies simply cannot be in-
stalled (certainly not without a huge amount of effort on the part of your sysadmin). In such cases, one can instead
attempt a standalone installation <https://community.mrtrix.org/t/standalone-installation-on-linux/3549>. Alterna-
tively, if you (and your sysadmin) are comfortable with installation of dependencies from source within your home
directory, you can try the instructions suggested on the wiki section of the MRtrix3 community forum.

5.5.2 Remote display

Most people would expect to be able to run mrview on the server using X11 forwarding. Unfortunately, this will not
work without some effort. The most up-to-date details on attempts to use mrview in this way can be found in the
relevant Wiki entry of the MRtrix3 community forum.

5.5.3 Configuration

There are a number of parameters that can be set in the configuration file that are highly relevant in a HPC environment,
particularly when the user’s home folder is stored over a network-based filesystem (as is often the case). The MRtrix3
configuration file is located either system-wide in /etc/mrtrix.conf, and/or in each user’s home folder in ~/ .
mrtrix.conf. Entries consist of key: value entries, one per line, stored as ASCII text.

e NumberOfThreads (default: hardware concurrency, as reported by the system): by default, MRzrix3 will use
as many threads as the system reports being able to run concurrently. You may want to change that number to a
lower value, to prevent MRtrix3 from taking over the system entirely. This is particularly true if you anticipate
many users running many MRtrix3 commands concurrently.

e TmpFileDir (default: ‘/tmp’): any image data passed from one MRtrix3 command to the next using a Unix
pipeline is actually stored in a temporary file, and its filename passed to the next command. While this is
fine if the filesystem holding the temporary file is locally backed and large enough, it can cause significant
slowdown and bottlenecks if it resides on a networked filesystem, as the temporary file will most likely need

5.5. HPC clusters installation 19

https://community.mrtrix.org/t/installation-of-mrtrix3-and-all-its-dependencies-from-source/3547
http://community.mrtrix.org/t/remote-display-issues/2547
http://community.mrtrix.org
http://en.cppreference.com/w/cpp/thread/thread/hardware_concurrency

MRtrix Documentation, Release 3.0

to be transferred in its entirety over the network and back again. Also, if the filesystem is too small, MRtrix3
commands may abort when processing large files. In general, the / tmp folder is likely to be the most appropriate
(especially if mounted as tmpfs). If however it is not locally mounted, or too small, you may want to set this
folder to some other more suitable location.

* TrackWriterBufferSize (default: 16777216). When writing out track files, MRtrix3 will buffer up the output
and write out in chunks of 16MB, to limit the frequency of write() calls and the amount of IO requests. More
importantly, when several instances of MRtrix3 are generating tracks concurrently and writing to the same
filesystem, frequent small writes will result in massive fragmentation of the output files. By setting a large
buffer size, the chances of writes being concurrent is reduced drastically, and the output files are much less
likely to be badly fragmented. Note that fragmentation can seriously affect the performance of subsequent
commands that need to read affected data. Depending on the type of operations performed, it may be beneficial
to use larger buffer sizes, for example 256MB. Note that larger numbers imply greater RAM usage to hold the
data prior to write-out, so it is best to keep this much smaller than the total RAM capacity.

5.6 Running MRtrix3 using containers

From MRtrix version 3. 0. 3 onwards, official Docker and Singularity containers are provided for utilising MRtrix3
commands, enabling use of all MRtrix3 commands (including those that possess dependencies on other neuroimaging
software packages) without necessitating any software installation on the user system.

5.6.1 FSL registration
The MRtrix3 containers include within them a subset of those commands that are part of FSL, as they are utilised
within specific MRtrix3 Python scripts. Obtaining the FSL software typically necessitates registration. We therefore

request that any users of MRtrix3 containers who have not previously registered as a user of the FSL software complete
that process, as recognition of utilisation of their software.

5.6.2 Using Docker
Run terminal command

Non-GUI commands are typically executed as follows:

docker run —-rm —-it mrtrix3 <command>

(replacing “<command>" with the name of the command to be executed, along with any arguments / options to be
provided to it)

If an MRtrix3 image has not been built on the local system, the most recent MRtrix3 Docker image will be automatically
downloaded from [DockerHub](https://hub.docker.com/repository/docker/mrtrix3/mrtrix3).

Run GUI command

The following instructions have been shown to work on Linux:

xhost +local:root

docker run —--rm -it —--device /dev/dri/ -v /run:/run -v /tmp/.Xll-unix:/tmp/.X1ll-unix -
—e DISPLAY=$DISPLAY -e XDG_RUNTIME_DIR=S$XDG_RUNTIME_DIR -u $UID mrtrix3 mrview

xhost —-local:root # Run this when finished.

20 Chapter 5. Table of Contents

http://en.wikipedia.org/wiki/Tmpfs
https://www.fmrib.ox.ac.uk/fsl
https://fsl.fmrib.ox.ac.uk/fsldownloads_registration
https://hub.docker.com/repository/docker/mrtrix3/mrtrix3

MRtrix Documentation, Release 3.0

It may however be possible that you will need to modify these commands in order to operate without warning / error
on your system.

Explicitly build image locally

As an alternative to downloading the image from DockerHub as described above, the following instruction can be run
from a location in which the MRtrix3 source code has been cloned:

docker build —-tag mrtrix3

Set DOCKER_BUILDKIT=1 to build parts of the Docker image in parallel, which can speed up build time. Use
——build-arg MAKE_JOBS=4 to build MRtrix3 with 4 processors (can substitute this with any number of proces-
sors > 0); if omitted, MRtrix3 will be built using a single thread only.

5.6.3 Using Singularity

Build container natively

The following instruction can be run from the location in which the MRtrix3 source code has been cloned:

singularity build MRtrix3.sif Singularity

Build container from DockerHub

This command converts the Docker image as stored on DockerHub into a Singularity container stored on the user’s
local system:

singularity build MRtrix3.sif docker://mrtrix3/mrtrix3:<version>

(Replace “<version>" with the specific version tag of MRtrix3 desired)

Run terminal command

Unlike Docker containers, where an explicit “docker run” command must be utilised to execute a command within
a container, a Singularity image itself acts as an executable file that can be invoked directly:

MRtrix3.sif <command>

(replacing “<command>" with the name of the command to be executed, along with any arguments / options to be
provided to it)

Run GUI command

The following basic usage has been shown to work on Linux:

singularity run -B /run MRtrix3.sif mrview

If you wish to utilise a clean environment when executing mrview, you will likely find that it is necessary to explicitly
set the DISPLAY and XDG_RUNTIME_DIR environment variables. This could be done in a few different ways:

1. Set environment variables that will be added to the clean environment of the container:

5.6. Running MRtrix3 using containers 21

MRtrix Documentation, Release 3.0

export SINGULARITYENV_DISPLAY=$DISPLAY
export SINGULARITYENV_XDG_RUNTIME_DIR=$XDG_RUNTIME_DIR
singularity run —--cleanenv -B /run MRtrix3.sif mrview

1. Explicitly set those envvars during invocation (requires a relatively up-to-date Singularity):

singularity run --cleanenv —--env DISPLAY=S$DISPLAY,XDG_RUNTIME_DIR=$XDG_RUNTIME_
—DIR -B /run MRtrix3.sif mrview

1. Create a text file that specifies the environment variables to be set, and provide the path to that file at the
command-line (requires a relatively up-to-date Singularity):

echo $'DISPLAY=S$DISPLAY\nXDG_RUNTIME_DIR=$XDG_RUNTIME_DIR' > ~/.mrview.conf
singularity run --cleanenv --env-file ~/.singularity/mrview.conf -B /run MRtrix3.
—sif mrview

If you experience difficulties here with mrview, you may have better success if the Singularity container is built
directly from the MRtrix3 source code using the definition file “Singularity” rather than converting from a Docker
container or using a custom definition file.

If not using a clean environment, and you see the specific error:

Qt: Session management error: None of the authentication protocols specified are
—supported

This can be resolved by running:

’unset SESSION_MANAGER

5.7 Beginner DWI tutorial

Tip: Some proficiency with the Unix command-line is required to make the best use of this software. There are
many resources online to help you get started if you are not already familiar with it. We also recommend our own
Introduction to the Unix command-line, which was written with a particular focus on the types of use that are common
when using MRtrix3.

Warning: This tutorial is not intended to show the optimal or even recommended way of processing. It is merely
a simplified example, intended to familiarise the user with the typical command line interface of certain basic
processing steps.

This tutorial will hopefully provide enough information for a novice user to get from the raw DW image data to
performing some streamlines tractography. It may also be useful for experienced MRtrix users in terms of identifying
some of the new command names.

For all MRtrix3 scripts and commands, additional information on the command usage and available command-line
options can be found by invoking the command with the —help option. Note that this tutorial includes commands
and scripts for which there are relevant journal articles for citation; these are listed on the help pages also.

22 Chapter 5. Table of Contents

https://command-line-tutorial.readthedocs.io/

MRtrix Documentation, Release 3.0

5.7.1 DWI geometric distortion correction

If the user has access to reversed phase-encode spin-echo image data, this can be used to correct the susceptibility-
induced geometric distortions present in the diffusion images, as well as any eddy current-induced distortions and
inter-volume subject motion. Procedures for this correct are not yet implemented in MRtrix3, though we do provide a
script for interfacing with the relevant FSL tools:

dwifslpreproc <Input DWI series> <Output corrected DWI series> [options]

For more details, see the dwifsipreproc help file. In particular, it is necessary to manually specify what type of reversed
phase-encoding acquisition has taken place (if any), and potentially provide additional relevant input images or provide
details of the phase encoding scheme used in the acquisition.

5.7.2 DWI brain mask estimation

In previous versions of MRtrix, a heuristic was used to derive this mask; a dedicated command is now provided:

$ dwiZ2mask <Input DWI> <Output mask>
$ mrview <Input DWI> -roi.load <Output mask>

Note that if you are working with ex-vivo data, this command will likely not give the desired results. It can also give
inconsistent results in cases of low SNR, strong B1 bias field, or even with good-quality images; it is recommended
that the output of this command should always be checked (and corrected if necessary) before proceeding with further
processing.

5.7.3 Response function estimation

To perform spherical deconvolution, the DWI signal emanating from a single coherently-oriented fibre bundle must be
estimated. We provide a script for doing this, which has a range of algorithms and parameters. This example will use
fairly sensible defaults:

$ dwiZresponse tournier <Input DWI> <Output response text file>
$ shview <Output response text file>

5.7.4 Fibre Orientation Distribution estimation

This command performs Constrained Spherical Deconvolution (CSD) based on the response function estimated pre-
viously.

$ dwi2fod csd <Input DWI> <Input response text file> <Output FOD image> -mask <Input,,
—DWI mask>
$ mrview <Input DWI> -odf.load_sh <Output FOD image>

5.7.5 Whole-brain streamlines tractography

For the sake of this tutorial, we will perform whole-brain streamlines tractography, using default reconstruction pa-
rameters.

$ tckgen <Input FOD image> <Output track file> -seed_image <Input DWI mask> -mask
—<Input DWI mask> —-select <Number of tracks>
$ mrview <Input DWI> -tractography.load <Output track file>

5.7. Beginner DWI tutorial 23

MRtrix Documentation, Release 3.0

Note: Loading a very large number of tracks can inevitably make the mrview software run very slowly. When this
occurs, it may be preferable to instead view only a subset of the generated tracks, e.g.:

$ tckedit <Track file> <Smaller track file> —number <Smaller number of tracks>
$ mrview <Input DWI> -tractography.load <Smaller track file>

5.7.6 Track Density Imaging (TDI)

TDI can be useful for visualising the results of tractography, particularly when a very large number of streamlines is
generated.

$ tckmap <Input track file> <Output TDI> -vox <Voxel size in mm>
$ mrview <Output TDI>

5.8 Images and other data

5.8.1 Image format handling in MRtrix3

MRtrix3 provides a flexible data input/output back-end in the shared library, which is used across all applications.
This means that all applications in MRtrix3 can read or write images in all the supported formats