MRtrix Documentation
Release 3.0

MRtrix contributors

Dec 14, 2022

Install

10

11

12

13

14

15

16

17

18

19

20

Before you install

Linux installation

macOS installation

Windows installation

HPC clusters installation

Key features

Commands and scripts

Beginner DWI tutorial

Images and other data

Command-line usage

Configuration file

DWI denoising

DWI distortion correction using dwipreproc
Response function estimation

Maximum spherical harmonic degree /.«
Multi-tissue constrained spherical deconvolution
Anatomically-Constrained Tractography (ACT)
Spherical-deconvolution Informed Filtering of Tractograms (SIFT)
Structural connectome construction

Using the connectome visualisation tool

11

15

19

23

25

27

29

43

49

51

53

57

63

65

67

71

75

79

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

labelconvert: Explanation & demonstration
Global tractography

ISMRM tutorial - Structural connectome for Human Connectome Project (HCP)
Fibre density and cross-section - Single shell DWI
Fibre density and cross-section - Multi-tissue CSD
Expressing the effect size relative to controls
Displaying results with streamlines

Warping images using warps generated from other packages
Diffusion gradient scheme handling

Global intensity normalisation

Orthonormal Spherical Harmonic basis

Dixels and Fixels

Motivation for afdconnectivity

DICOM handling

Batch processing with foreach

Frequently Asked Questions (FAQ)

Display issues

Unusual symbols on terminal

Compiler error during build

Hanging or Crashing

Advanced debugging

List of MRtrix3 commands

List of MRtrix3 scripts

List of MRtrix3 configuration file options

MRtrix 0.2 equivalent commands

83

89

93

97

107

115

117

119

121

127

129

131

133

135

143

147

153

157

159

161

165

167

319

345

353

MRtrix Documentation, Release 3.0

MRtrix provides a large suite of tools for image processing, analysis and visualisation, with a focus on the analysis
of white matter using diffusion-weighted MRI Features include the estimation of fibre orientation distributions using
constrained spherical deconvolution (Tournier et al.. 2004; Tournier et al., 2007; Jeurissen et al., 2014), a probabilisitic
streamlines algorithm for fibre tractography of white matter (Tournier et al., 2012), fixel-based analysis of apparent
fibre density and fibre cross-section (Raffelt et al., 2012; Raffelt et al., 2015; Raffelt et al., 2016), quantitative structural
connectivity analysis (Smith et al., 2012; Smith et al., 2013; Smith et al., 2015; Christiaens et al., 2015), and non-linear
spatial registration of fibre orientation distribution images (Raffelt et al., 2011).

These applications have been written from scratch in C++, using the functionality provided by Eigen, and Qt. The
software is currently capable of handling DICOM, NIfTI and AnalyseAVW image formats, amongst others. The
source code is distributed under the Mozilla Public License.

Install 1

http://www.ncbi.nlm.nih.gov/pubmed/15528117
http://www.ncbi.nlm.nih.gov/pubmed/17379540
https://www.ncbi.nlm.nih.gov/pubmed/25109526
http://onlinelibrary.wiley.com/doi/10.1002/ima.22005/abstract
https://www.ncbi.nlm.nih.gov/pubmed/22036682
https://www.ncbi.nlm.nih.gov/pubmed/26004503
https://www.ncbi.nlm.nih.gov/pubmed/27639350
https://www.ncbi.nlm.nih.gov/pubmed/22705374
https://www.ncbi.nlm.nih.gov/pubmed/23238430
https://www.ncbi.nlm.nih.gov/pubmed/26163802
https://www.ncbi.nlm.nih.gov/pubmed/26272729
https://www.ncbi.nlm.nih.gov/pubmed/21316463
http://eigen.tuxfamily.org/
http://qt-project.org/
http://mozilla.org/MPL/2.0/

MRtrix Documentation, Release 3.0

2 Install

CHAPTER 1

Before you install

1.1 Acknowledging this work

If you wish to include results generated using the MRtrix3 package in a publication, please include a line such as the
following to acknowledge this work:

* Fibre-tracking was performed using the MRtrix package (J-D Tournier, Brain Research Institute, Melbourne,
Australia, https://github.com/MRtrix3/mrtrix3) (Tournier et al. 2012)

Note: Many features have been published and included in MRtrix3 since the above 2012 paper. Please check the
references listed on the specific application’s page to ensure the appropriate reference is included so that more recent
contributors to MRtrix3 are acknowledged.

1.2 Warranty

The software described in this manual has no warranty, it is provided “as is”. It is your responsibility to validate the
behavior of the routines and their accuracy using the source code provided, or to purchase support and warranties from
commercial redistributors. Consult the Mozilla Public License for further details.

1.3 License

MRtrix is free software: you can redistribute it and/or modify it under the terms of the Mozilla Public License as
published by the Free Software Foundation, either version 2 of the License, or (at your option) any later version.

MRtrix is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Mozilla Public License
for more details. You should have received a copy of Mozilla Public License along with MRtrix. If not, see http:
/lmozilla.org/MPL/2.0/.

https://github.com/MRtrix3/mrtrix3
http://mozilla.org/MPL/2.0/
http://mozilla.org/MPL/2.0/
http://www.fsf.org/
http://mozilla.org/MPL/2.0/
http://mozilla.org/MPL/2.0/
http://mozilla.org/MPL/2.0/
http://mozilla.org/MPL/2.0/

MRtrix Documentation, Release 3.0

4 Chapter 1. Before you install

CHAPTER 2

Linux installation

We outline the steps for installing MRtrix3 on a Linux machine. Please consult the MRtrix3 forum if you encounter
any issues with the configure, build or runtime operations of MRtrix3.

2.1 Check requirements

To install MRtrix3, you will need the following:
¢ a C++11 compliant compiler (GCC version >= 4.9, clang)
* Python version >= 2.7
* The zIib compression library
 Eigen version >= 3.2

* Qt version >= 4.7 [GUI components only]

Warning: To run the GUI components of MRtrix3 (mrview & shview), you will also need:
* an OpenGL 3.3 compliant graphics card and corresponding software driver

Note that this implies you cannot run the GUI components over a remote X11 connection, since it can’t support
OpenGL 3.3+ rendering - see Display issues for details.

2.2 Install Dependencies

The installation procedure will depend on your system. Package names may changes between distributions, and
between different releases of the same distribution. The commands below are suggestions based on what has been
reported to work in the past, but may need to be amended. See below for hints on how to proceed in this case.

¢ Ubuntu Linux (and derivatives, e.g. Linux Mint):

http://community.mrtrix.org/
https://en.wikipedia.org/wiki/C%2B%2B11
https://www.python.org/
http://www.zlib.net/
http://eigen.tuxfamily.org
http://www.qt.io/
https://en.wikipedia.org/wiki/OpenGL

MRtrix Documentation, Release 3.0

sudo apt-get install git g++ python python-numpy libeigen3-dev zliblg-dev libgt4-
—opengl-dev libgll-mesa-dev

RPM-based distros (Fedora, CentOS):

sudo yum install git g++ python numpy eigen3-devel zlib-devel libgt4-devel libgll-
—mesa-dev

on Fedora 24, this is reported to work:

sudo yum install git gcc-c++ python numpy eigen3-devel zlib-devel gt-devel mesa-
—1ibGL-devel

e Arch Linux:

sudo pacman -Syu git python python-numpy gcc zlib eigen gt5-svg

2.2.1 If this doesn’t work

You may find that your package installer is unable to find the packages listed, or that the subsequent steps fail due to
missing dependencies (particularly the . /configure command). In this case, you will need to search the package
database and find the correct names for these packages:

o git

* your compiler (gcc 4.9 or above, or clang)

 Python version >2.7

e NumPy

¢ the zlib compression library and its corresponding development header/include files
« the Eigen template library (only consists of development header/include files);

e Qt version >4.7, its corresponding development header/include files, and the executables required to compile
the code. Note this will most likely be broken up into several packages, depending on how your distribution has
chosen to distribute this. You will need to get those that provide these Qt modules: Core, GUI, OpenGL, SVG,
and the gmake, rcc & moc executables (note these will probably be included in one of the other packages).

Warning: The compiler included in Ubuntu 12.04 and other older distributions is no longer capable of compiling
MRtrix3, as it now requires C++11 support. The solution is to use a newer compiler as provided by the Ubuntu
toolchain PPA - follow the link for instructions on how to add the PPA. Once the PPA has been added, you’ll need
toissue a sudo apt-get update, followed by sudo apt-get install g++-4.9. You will probably
also need to tell . /configure to use this compiler (see . /configure —help for further options):

CXX=g++-4.9 ./configure

2.2.2 If this really doesn’t work

If for whatever reasons you need to install MR¢rix3 on a system with older dependencies, and you are unable to update
the software (e.g. you want to run MRtrix3 on a centrally-managed HPC cluster), you can as a last resort use the
procedure described in Standalone installation on Linux.

6 Chapter 2. Linux installation

https://launchpad.net/~ubuntu-toolchain-r/+archive/ubuntu/test
https://launchpad.net/~ubuntu-toolchain-r/+archive/ubuntu/test

MRtrix Documentation, Release 3.0

2.3 Git setup

Set up your git environment as per the Git instructions page

2.4 Build MRtrix3

1. Clone the MRtrix3 repository:

’git clone https://github.com/MRtrix3/mrtrix3.git

or if you have set up your SSH keys (for collaborators):

’git clone git@github.com:MRtrix3/mrtrix3.git

2. Configure the MRtrix3 install:

cd mrtrix3
./configure

If this does not work, examine the ‘configure.log’ file that is generated by this step, it may give clues as to what
went wrong.

3. Build the binaries:

’./build

2.5 Set up MRtrix3

1. Update the shell startup file, so that the locations of MRtrix3 commands and scripts will be added to your PATH
envionment variable.

If you are not familiar or comfortable with modification of shell files, MRtrix3 now provides a convenience
script that will perform this setup for you (assuming that you are using bash or equivalent interpreter). From
the top level MRtrix3 directory, run the following:

./set_path

2. Close the terminal and start another one to ensure the startup file is read (or just type ‘bash’)
3. Type mrview to check that everything works

4. You may also want to have a look through the List of MRtrix3 configuration file options and set anything you
think might be required on your system.

Note: The above assumes that your shell will read the ~/ .bashrc file at startup time. This is not
always guaranteed, depending on how your system is configured. If you find that the above doesn’t work
(e.g. typing mrview returns a ‘command not found’ error), try changing step 1 to instruct the set_path
script to update PATH within a different file, for example ~/ .bash_profile or ~/.profile,e.g.
as follows:

./set_path ~/.bash_profile

2.3. Git setup 7

https://help.github.com/articles/set-up-git/#setting-up-git

MRtrix Documentation, Release 3.0

2.6 Keeping MRtrix3 up to date

1. You can update your installation at any time by opening a terminal in the MRtrix3 folder, and typing:

git pull
./build

2. If this doesn’t work immediately, it may be that you need to re-run the configure script:

’./configure

and re-run step 1 again.

2.7 Standalone installation on Linux

In some cases, users need to install MRtrix3 on systems running older distributions, over which they have little or
no control, for example centrally-managed HPC clusters. In such cases, there genuinely is no way to install the
dependencies required to compile and run MRtrix3. There are two ways to address this problem: static executables,
and the standalone packager. With both approaches, you can compile MR¢rix3 on a modern distro (within a virtual
machine for example), package it up, and install it on any Linux system without worrying about dependencies.

2.7.1 Setting the CPU architecture for optimal performance

By default, configure will cause the build script to produce generic code suitable for any current CPU. If you
want to ensure optimal performance on your system, you can request that configure produce code tailored to your
specific CPU architecture, which will allow it to use all available CPU instructions and tune the code differently. This
can improve performance particularly for linear algebra operations as Eigen will then make use of these extensions.
However, note that this means the executables produced will likely not run on a different CPUs with different instruc-
tion sets, resulting in ‘illegal instruction’ runtime errors. If you intend to run MRtrix3 on a variety of different systems
with a range of CPUs, or you have no idea what the CPU is on your target system, it is safest to avoid changing the
default.

Specifying a different CPU architecture is done by setting the ARCH environment variable prior to invoking ./
configure. The value of this variable will then be passed to the compiler via the —-march option. To get the
best performance on the current system, you can specify native as the architecture, leaving it up to the compiler to
detect your particular CPU and its available instructions. For example:

export ARCH=native
./configure
./build

For more specific architectures, you can provide any value from the list of specifiers understood by the compiler, for
example ARCH="'sandybridge' ./configure

2.7.2 Static build

The simplest approach to this problem is to build so-called static executables, which have no run-time dependencies.
This can be accomplished by generating a static configuration before building the software, as follows.

First, obtain the code and extract or clone it on a modern distribution (Arch, Ubuntu 16.04, Mint 18, ..., potentially
with a virtual machine if required). Then, from the main MRtrix3 folder:

8 Chapter 2. Linux installation

http://eigen.tuxfamily.org
https://gcc.gnu.org/onlinedocs/gcc-6.2.0/gcc/x86-Options.html#x86-Options
http://en.wikipedia.org/wiki/Static_library

MRtrix Documentation, Release 3.0

./build clean

git pull

./configure -static [-nogui]
./build

Note that this requires the availability of static versions of the required libraries. This is generally not a problem, most
distributions will provide those by default, with the exception of Qt. If you require a static build of MRView, you
will most likely need to build a static version of Qt beforehand. Use the —nogui option to skip installation of GUI
components, which rely on Qt.

You can then copy the contents of the bin/, 1ib/ and share/ folders onto target systems, make sure the bin/
folder location is listed in the PATH, and start using these commands. For example:

1. Create a single archive of the relevant folders (for easy deployment):

’tar cvfz mrtrix3_static.tgz bin/ lib/ share/

2. Copy the resulting mrtrix3_static.tgz file over to the target system, into a suitable location.

3. Extract the archive in this location:

’tar xviz mrtrix3_static.tgz

You can safely remove the mrtrix3_static.tgz file at this point.

4. Add the bin/ folder to the system PATH, e.g.:

’export PATH="S$ (pwd) /bin: $PATH"

Note that the above command will only add MRtrix3 to the PATH for the current session. You would need to
add the equivalent line to your users’ startup scripts, using whichever mechanism is appropriate for your system.

2.7.3 Standalone packager

In the rare cases where the static build procedure above doesn’t work for you, MRtrix3 now includes the
package_mrtrix script, which is designed to package an existing and fully-functional installation from one sys-
tem, so that it can be installed as a self-contained standalone package on another system. What this means is that you
can now compile MRtrix3 on a modern distro (within a virtual machine for example), package it up, and install it on
any Linux system without worrying about dependencies.

Note: this is not the recommended way to install MRtrix3, and may not work for your system. This is provided on a
best-effort basis, as a convenience for users who genuinely have no alternative.

What it does

The package_mrtrix script is included in the top-level folder of the MRtrix3 package (if you don’t have it, use
git pull to update). In essence, all it does is collate all the dynamic libraries necessary for runtime operation into
a single folder, which you can then copy over and extract onto target systems. For a truly standalone installation, you
need to add the —~standalone option, which will also include any system libraries required for runtime operation
from your current system, making them available on any target system.

Limitations

* OpenGL support: this approach cannot magically make your system run mrview if it doesn’t already support
OpenGL 3.3 and above. This is a hardware driver issue, and can only be addressed by upgrading the drivers for

2.7. Standalone installation on Linux 9

http://doc.qt.io/qt-5/linux-deployment.html#building-qt-statically

MRtrix Documentation, Release 3.0

your system - something that may or may not be possible.

* GUI support: while this approach collates all the X11 libraries that are needed to launch the program, it is likely
that these will then dynamically attempt to load further libraries that reside on your system. Unfortunately, this
can introduce binary compatibility issues, and cause the GUI components to abort. This might happen even if
your system does have OpenGL 3.3 support. There is unfortunately no simple solution to this.

* Installation on remote systems: bear in mind that running the GUI components over a remote X11 connection
is not possible, since the GLX protocol does not support OpenGL 3 and above (see Display issues for details).
You may be able to use an OpenGL-capable VNC connection, but if that is not possible, there is little point
in installing the GUI components on the remote server. The recommendation would be to configure with the
—nogui option to skip the GUI components. You should also be able to access your data over the network (e.g.
using SAMBA or SSHFS), in which case you would be able to display the images by running mrview locally
and loading the images over the shared network drives.

Instructions

First, obtain the code and extract or clone it on a modern distribution (Arch, Ubuntu 14.04, Mint 17, ..., potentially
with a virtual machine if required). Then, from the main MRtrix3 folder:

./build clean

git pull

./configure [-nogui]

./build

./package_mrtrix -standalone

Then copy the resulting _package/mrtrix3 folder to the desired location on the target system (maybe your own
home folder). To make the MRtrix3 command available on the command-line, the bin/ folder needs to be added to
your PATH (note this assumes that you’re running the BASH shell):

export PATH="$ (pwd) /bin:SPATH"

Note that the above command will only add MRtrix3 to the PATH for the current session. You would need to add the
equivalent line to your users’ startup scripts, using whichever mechanism is appropriate for your system.

10 Chapter 2. Linux installation

CHAPTER 3

macOS installation

We outline the steps for installing MRtrix3 on macOS. Please consult the MRtrix3 forum if you encounter any issues
with the configure, build or runtime operations of MRtrix3.

3.1 Check requirements

To install MRtrix3 , you will need the following:
e a C++11 compliant compiler (e.g. clang in Xcode)
 Python version >= 2.7 (already included in macOS)
e The zlib compression library (already included in macOS)
» Eigen version >=3.2

* Qt version >= 5.1 [GUI components only] - important: versions prior to this will not work

Warning: To run the GUI components of MRtrix3 (mrview & shview), you will also need:

e an OpenGL 3.3 compliant graphics card and corresponding software driver - thankfully OpenGL 3.3 is
supported across the entire macOS range with OS versions >= 10.9.

Note: If you currently do not plan to contribute to the MRtrix3 code, the most convenient way to install Mrtrix3 on
macOS is to install it via homebrew.

¢ If you do not have homebrew installed, you can install it via:

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/
—master/install) "

* You need to add the MRtrix3 tap to homebrew: brew tap MRtrix3/mrtrix3

¢ You can now install the latest version of MRtrix3 with: brew install mrtrix3

11

http://community.mrtrix.org/
https://en.wikipedia.org/wiki/C%2B%2B11
http://clang.llvm.org/
https://www.python.org/
http://www.zlib.net/
http://eigen.tuxfamily.org/
http://www.qt.io/
https://en.wikipedia.org/wiki/OpenGL

MRtrix Documentation, Release 3.0

This should be all you need to do. For all installation options type brew info mrtrix3. MRtrix3 will get
upgraded when you upgrade all homebrew packages brew update && brew upgrade. If you want to avoid
upgrading MRtrix3 the next time you upgrade homebrew you can do so with brew pin mrtrix3.

3.2 Install Dependencies

1. Update macOS to version 10.10 (Yosemite) or higher - OpenGL 3.3 will typically not work on older versions
2. Install XCode from the Apple Store
3. Install Eigen3 and Qt5.

There are several alternative ways to do this, depending on your current system setup. The most convenient is
probably to use your favorite package manager (Homebrew or MacPorts), or install one of these if you haven’t
already.

If you find your first attempt doesn’t work, please resist the temptation to try one of the other options: in our
experience, this only leads to further conflicts, which won’t help installing MRtrix3 and will make things more
difficult to fix later. Once you pick one of these options, we strongly recommend you stick with it, and consult
the community forum if needed for advice and troubleshooting.

* With Homebrew:

— Install Eigen3: brew install eigen

— Install Qt5: brew install gt5

— Install pkg-config: brew install pkg-config

— Add Qt’s binaries to your path: export PATH= brew —-prefix’ /opt/qt5/bin:S$PATH
e With MacPorts:

— Install Eigen3: port install eigen3

— Install Qt5: port install gt5

— Install pkg-config: port install pkgconfig

— Add Qt’s binaries to your path: export PATH=/opt/local/libexec/qt5/bin:S$PATH

* As a last resort, you can manually install Eigen3 and Qt5: You can use this procedure if you have good
reasons to avoid the other options, or if for some reason you cannot get either Homebrew or MacPorts to
work.

— Install Eigen3: download and extract the source code from eigen.tuxfamily.org

Install Qt5: download and install the latest version from http://download.qt.io/official_releases/qt/
You need to select the file labelled gt —opensource-mac-x64-clang—5.X.X.dmg. Note
that you need to use at least Qt 5.1, since earlier versions don’t support OpenGL 3.3. We advise
you to use the latest version (5.7.0 as of the last update). You can choose to install it system-wide
or just in your home folder, whichever suits - just remember where you installed it.

Make sure Qt5 tools are in your PATH (edit as appropriate) export PATH=/path/to/Qt5/
5.X.X/clang_64/bin:SPATH

Set the CFLAG variable for eigen (edit as appropriate) export EIGEN_CFLAGS="-isystem
/where/you/extracted/eigen" Make sure not to include the final /Eigen folder in the
path name - use the folder in which it resides instead!

12 Chapter 3. macOS installation

http://brew.sh/
http://macports.org/
http://community.mrtrix.org
http://brew.sh/
http://macports.org/
http://brew.sh/
http://macports.org/
http://eigen.tuxfamily.org/
http://download.qt.io/official_releases/qt/

MRtrix Documentation, Release 3.0

3.3 Git setup

Set up your git environment as per the Git instructions page

3.4 Build MRtrix3

1. Clone the MRtrix3 repository:

’git clone https://github.com/MRtrix3/mrtrix3.git

or if you have set up your SSH keys (for collaborators):

’git clone git@github.com:MRtrix3/mrtrix3.git

2. Configure the MRtrix3 install:

cd mrtrix3
./configure

If this does not work, examine the ‘configure.log’ file that is generated by this step, it may give clues as to what
went wrong.

3. Build the binaries:

’./build

3.5 Set up MRtrix3

1. Update the shell startup file, so that the shell can locate the MRtrix3 commands and scripts, by adding the bin/
folder to your PATH environment variable.

If you are not familiar or comfortable with modification of shell files, MRtrix3 provides a convenience script
that will perform this setup for you (assuming that you are using bash or equivalent interpreter). From the top
level MRtrix3 directory, run the following:

./set_path

2. Close the terminal and start another one to ensure the startup file is read (or just type ‘bash’)
3. Type mrview to check that everything works

4. You may also want to have a look through the List of MRtrix3 configuration file options and set anything you
think might be required on your system.

Note: The above assumes that your shell will read the ~/ .bash_profile file at startup time. This is
not always guaranteed, depending on how your system is configured. If you find that the above doesn’t
work (e.g. typing mrview returns a ‘command not found’ error), try changing step 1 to instruct the
set_path script to update PATH within a different file, for example ~/ .profile or ~/.bashrc,
e.g. as follows:

./set_path ~/.profile

3.3. Git setup 13

https://help.github.com/articles/set-up-git/#setting-up-git

MRtrix Documentation, Release 3.0

3.6 Keeping MRtrix3 up to date

1. You can update your installation at any time by opening a terminal, navigating to the MRtrix3 folder (e.g. cd
mrtrix3), and typing:

git pull
. /build

2. If this doesn’t work immediately, it may be that you need to re-run the configure script:

./configure

and re-run step 1 again.

14 Chapter 3. macOS installation

CHAPTER 4

Windows installation

We outline the steps for installing MRtrix3 for Windows using MSYS2. Please consult the MRtrix3 forum if you
encounter any issues with the configure, build or runtime operations of MRtrix3.

Warning: Some of the Python scripts provided with MRtrix3 are dependent on external software tools (for
instance FSL). If these packages are not available on Windows, then the corresponding MRtrix3 scripts also cannot
be run on Windows. A virtual machine may therefore be required in order to use these particular scripts; though
MRtrix3 may still be installed natively on Windows for other tasks.

4.1 Check requirements

To install MRtrix3, you will need the following:
e a C++11 compliant compiler
¢ Python version >= 2.7
* The zIib compression library
» Eigen version >=3.2

e Qt version >= 4.7 [GUI components only]

Note: All of these dependencies are installed below by the MSYS?2 package manager.

Warning: To run the GUI components of MRtrix3 (mrview & shview), you will also need:

* an OpenGL 3.3 compliant graphics card and corresponding software driver

15

https://github.com/msys2/msys2/wiki
http://community.mrtrix.org/
https://en.wikipedia.org/wiki/C%2B%2B11
https://www.python.org/
http://www.zlib.net/
http://eigen.tuxfamily.org
http://www.qt.io/
https://en.wikipedia.org/wiki/OpenGL

MRtrix Documentation, Release 3.0

Warning: When following the instructions below, use the ‘MinGW-w64 Win64 shell’; ‘MSYS2 shell’ and
‘MinGW-w64 Win32 shell’ should be avoided.

4.2 Install and update MSYS2

1. Download and install the most recent 64-bit MSYS?2 installer from http://msys2.github.io/ (msys2-x86_64-
*.exe), and following the installation instructions from the MSYS2 wiki.

2. Run the program ‘MinGW-w64 Win64 Shell’ from the start menu.

3. Update the system packages, as per the instructions:

pacman —-Syuu

Close the terminal, start a new ‘MinGW-w64 Win64 Shell’, and repeat as necessary until no further packages
are updated.

Warning: At time of writing, this MSYS2 system update will give a number of instructions, including: terminat-
ing the terminal when the update is completed, and modifying the shortcuts for executing the shell(s). Although
these instructions are not as prominent as they could be, it is vital that they are followed correctly!

4.3 Install MRtrix3 dependencies

1. From the ‘MinGW-w64 Win64 Shell’ run:

pacman -S git python pkg-config mingw-w64-x86_64-gcc mingw-w64-x86_64-eigen3
—mingw-w64-x86_64-9gtb

Sometimes pacman may fail to find a particular package from any of the available mirrors. If this occurs, you
can download the relevant package from SourceForge: place both the package file and corresponding .sig file
into the /var/cache/pacman/pkg directory, and repeat the pacman call above.

Sometimes pacman may refuse to install a particular package, claiming e.g.:

error: failed to commit transaction (conflicting files)
mingw-w64-x86_64-eigen3: /mingw64 exists in filesystem
Errors occurred, no packages were upgraded.

Firstly, if the offending existing target is something trivial that can be deleted, this is all that should be required.
Otherwise, it is possible that MSYS2 may mistake a _file_ existing on the filesystem as a pre-existing _direc-
tory_; a good example is that quoted above, where pacman claims that directory /mingw64 exists, but it is in
fact the two files /mingw64 .exe and /mingw64 .1ini that cause the issue. Temporarily renaming these two
files, then changing their names back after pacman has completed the installation, should solve the problem.

4.4 Set up git and download MRirix3 sources

1. Configure global settings for Git in the ‘MinGW-w64 Win64 Shell’:

16 Chapter 4. Windows installation

http://msys2.github.io/
https://github.com/msys2/msys2/wiki/MSYS2-installation
https://github.com/msys2/msys2/wiki/MSYS2-installation#iii-updating-packages
https://sourceforge.net/projects/msys2/files/REPOS/MINGW/x86_64/

MRtrix Documentation, Release 3.0

git config —--global user.name "John Doe"
git config --global user.email johndoe@example.com
git config —-global push.default upstream

2. Clone the MRtrix3 repository:

’git clone https://github.com/MRtrix3/mrtrix3.git

4.5 Build MRtrix3

1. Configure the MRtrix3 install:

cd mrtrix3
./configure

If this does not work, examine the ‘configure.log’ file that is generated by this step, it may give clues as to what
went wrong.

2. Build the binaries:

’./build

4.6 Set up MRtrix3

1. Update the shell startup file, so that the shell can locate the MR¢trix3 commands and scripts, by adding the bin/
folder to your PATH environment variable.

If you are not familiar or comfortable with modification of shell files, MRtrix3 provides a convenience script
that will perform this setup for you (assuming that you are using bash or equivalent interpreter). From the top
level MRtrix3 directory, run the following:

./set_path

2. Close the terminal and start another one to ensure the startup file is read (or just type ‘bash’)
3. Type mrview to check that everything works

4. You may also want to have a look through the List of MRtrix3 configuration file options and set anything you
think might be required on your system.

4.7 Keeping MRtrix3 up to date

1. You can update your installation at any time by typing:

git pull
./build

2. If this doesn’t work immediately, it may be that you need to re-run the configure script:

./configure

and re-run step 1 again.

4.5. Build MRtrix3 17

MRtrix Documentation, Release 3.0

4.8 Compiling external projects with msys2

In msys2, the In —s command actually creates a copy of the target, not a symbolic link. By doing so, the build
script is unable to identify the location of the MRtrix libraries when trying to compile an external module.

The simplest way around this is simply to invoke the build script of the main MRtrix3 install directly. For example, if
compiling an external project called myproject, residing in a folder alongside the main mrt rix3 folder, the build
script can be invoked with:

current working directory is 'myproject':
../mrtrix3/build

If you really want a symbolic link, one solution is to use a standard Windows command prompt, with Administrator
privileges: In the file explorer, goto C: \Windows\system32, locate the file cmd . exe, right-click and select ‘Run
as administrator’. Within this prompt, use the mk1ink command (note that the argument order passed to mk1ink is
reversed with respect to 1n —s; i.e. provide the location of the link, then the target). Make sure that you provide the
full path to both link and target, e.g.:

mklink C:\msys64\home\username\src\my_project\build
—C:\msys64\home\username\src\MRtrix3\build

and msys 64 should be able to interpret the softlink path correctly (confirm with 1s -1a).

I have also found recently that the build script will not correctly detect use of a softlink for compiling an external
project when run under Python2, so Python3 must be used explicitly.

18 Chapter 4. Windows installation

CHAPTER B

HPC clusters installation

These instructions outline a few issues specific to high-performance computing (HPC) systems.

5.1 Installing MRtrix3

Most HPC clusters will run some flavour of GNU/Linux and hence a cluster administrator should be able to follow the
steps outlined for a Linux installation. In particular, if your sysadmin is able to install the required dependencies (the
preferred option), you should be able to subsequently Build MRtrix3.

However, it is not uncommon for HPC systems to run stable, and hence relatively old distributions, with outdated
dependencies. This is particularly problematic since MRtrix3 relies on recent technologies (C++11, OpenGL 3.3),
which are only available on recent distributions. There is therefore a good chance these dependencies simply cannot
be installed (certainly not without a huge amount of effort on the part of your sysadmin). In such cases, one can instead
attempt a Standalone installation on Linux. Alternatively, if you (and your sysadmin) are comfortable with installation
of dependencies from source within your home directory, you can try the instructions below.

5.2 Installation of MRtrix3 and dependencies from source

The following instructions list the steps I used to compile MR¢rix3 natively on a local HPC cluster. Replicating these
instructions line-for-line may not work on another system; I'm just providing these instructions here in case they
help to point somebody in the right direction, or encourage users to try a native installation rather than resorting to
transferring binaries compiled on another system.

¢ Installing a C++11-compliant g++ from source

Note that during this process, there will be three gcc directories created: one is for the source code (including
that of some prerequisites), one is for compilation objects, and one is the target of the final installation (since
you almost certainly won’t be able to install this version of gcc over the top of whatever is provided by the
HPC sysadmin).

19

MRtrix Documentation, Release 3.0

svn co svn://gcc.gnu.org/svn/gcc/branches/gcc-5-branch gcc_src/

(Don’t checkout the trunk gcc code; MRtrix3 will currently not compile with it)

The following gcc dependencies will be built as part of the gcc compilation, provided that they are placed in
the correct location within the gcc source directory.

wget https://gmplib.org/download/gmp/gmp—-6.1.1.tar.bz2
tar —-xf gmp-6.1.1.tar.bz2

mv gmp-6.1.1/ gcc_src/gmp/

wget ftp://ftp.gnu.org/gnu/mpc/mpc-1.0.3.tar.gz

tar —xf mpc-1.0.3.tar.gz

mv mpc-1.0.3/ gcc_src/mpc/

wget http://www.mpfr.org/mpfr-current/mpfr-3.1.4.tar.gz
tar —xf mpfr-3.1.4.tar.gz

mv mpfr-3.1.4/ gcc_src/mpfr/

With the following, the configure script (which resides within the gcc_src directory in this example)
must not be executed within that directory; rather, it must be executed from an alternative directory, which
will form the target location for the compilation object files. The target installation directory (set using the
——prefix option below) must be a location for which you have write access; most likely somewhere in your
home directory.

mkdir gcc_obj; cd gcc_obj/
../gcc_src/configure —--prefix=/path/to/installed/gcc --disable-multilib
make && make install

Installing Python3 from source

My local HPC cluster provided Python version 2.6.6, which was not adequate to successfully run the
configure and build scripts in MRtrix3. Therefore this necessitated a manual Python install - a newer
version of Python 2 would also work, but downloading Python 3 should result in less ambiguity about which
version is being run.

wget https://www.python.org/ftp/python/3.5.2/Python-3.5.2.tgz
tar —xf Python-3.5.2.tgz

mv Python-3.5.2/ python3/

cd python3/

./configure

. /make

cd ../

Installing Eigen3

wget http://bitbucket.org/eigen/eigen/get/3.2.8.tar.gz
tar —xf 3.2.8.tar.gz
mv eigen* eigen3/

Installing MRtrix3

Personally I prefer to install a no-GUI version of MRtrix3 on high-performance computing systems, and transfer
files to my local system if I need to view anything; so I use the —-nogui flag for the configure script.

git clone https://github.com/MRtrix3/mrtrix3.git
cd mrtrix3/

export CXX=/path/to/installed/gcc/bin/g++

export EIGEN_CFLAGS="-isystem /path/to/eigen3/"

(continues on next page)

20

Chapter 5. HPC clusters installation

https://gcc.gnu.org/install/prerequisites.html

MRtrix Documentation, Release 3.0

(continued from previous page)

export LD_LIBRARY_PATH="/path/to/installed/gcc/lib64:S$LD_LIBRARY_PATH"
../python3/python configure -nogui
../python3/python build

If you encounter issues when running MRtrix3 commands that resemble the following:

mrconvert: /usr/lib64/libstdc++.s0.6: version “GLIBCXX_3.4.9' not found
(required by mrconvert)

This indicates that the shared library of the compiler version installed on the cluster is being found before that
of the C++11-compliant compiler installed manually. The 1ib64/ directory of the manually-installed gcc
version must appear before that of the version installed on the cluster in the LD_LIBRARY_PATH environment
variable.

5.3 Remote display

Most people would expect to be able to run mrview on the server using X11 forwarding. Unfortunately, this will not
work without some effort - please refer to Display issues for details.

5.4 Configuration

There are a number of parameters that can be set in the configuration file that are highly relevant in a HPC environment,
particularly when the user’s home folder is stored over a network-based filesystem (as is often the case). The MRtrix3
configuration file is located either system-wide in /etc/mrtrix.conf, and/or in each user’s home folder in ~/ .
mrtrix.conf. Entries consist of key: value entries, one per line, stored as ASCII text.

* NumberOfThreads (default: hardware concurrency, as reported by the system): by default, MRtrix3 will use
as many threads as the system reports being able to run concurrently. You may want to change that number to a
lower value, to prevent MRtrix3 from taking over the system entirely. This is particularly true if you anticipate
many users running many MRtrix3 commands concurrently.

e TmpFileDir (default: ‘/tmp’): any image data passed from one MRtrix3 command to the next using a Unix
pipeline is actually stored in a temporary file, and its filename passed to the next command. While this is
fine if the filesystem holding the temporary file is locally backed and large enough, it can cause significant
slowdown and bottlenecks if it resides on a networked filesystems, as the temporary file will most likely need
to be transferred in its entirety over the network and back again. Also, if the filesystem is too small, MRtrix3
commands may abort when processing large files. In general, the /tmp folder is likely to be the most appropriate
(especially if mounted as tmpfs). If however it is not locally mounted, or too small, you may want to set this
folder to some other more suitable location.

* TrackWriterBufferSize (default: 16777216). When writing out track files, MRtrix3 will buffer up the output
and write out in chunks of 16MB, to limit the frequency of write() calls and the amount of 1O requests. More
importantly, when several instances of MRtrix3 are generating tracks concurrently and writing to the same
filesystem, frequent small writes will result in massive fragmentation of the output files. By setting a large
buffer size, the chances of writes being concurrent is reduced drastically, and the output files are much less
likely to be badly fragmented. Note that fragmentation can seriously affect the performance of subsequent
commands that need to read affected data. Depending on the type of operations performed, it may be beneficial
to use larger buffer sizes, for example 256MB. Note that larger numbers imply greater RAM usage to hold the
data prior to write-out, so it is best to keep this much smaller than the total RAM capacity.

5.3. Remote display 21

http://en.cppreference.com/w/cpp/thread/thread/hardware_concurrency
http://en.wikipedia.org/wiki/Tmpfs

MRtrix Documentation, Release 3.0

22

Chapter 5. HPC clusters installation

CHAPTER O

Key features

While MRtrix3 is primarily intended to be used for the analysis of diffusion MRI data, at its fundamental level it is
designed as a general-purpose library for the analysis of any type of MRI data. As such, it provides a back-end to
simplify a large number of operations, many of which will be invisible to the end-user. Specifically, MRtrix3 features:

* a consistent command-line interface, with inline documentation for each command

* universal import/export capabilities when accessing image data across all MRtrix3 applications.

* Multi-file numbered image support to load multiple images as a single multi-dimensional dataset

* efficient use of Unix Pipelines for complex workflows

* high performance on modern multi-core systems, with multi-threading used extensively throughout MRtrix3;
* available on all common modern operating systems (GNU/Linux, MacOSX, Windows);

* aconsistent Coordinate system with most operations performed in scanner/world coordinates where possible.

23

MRtrix Documentation, Release 3.0

24

Chapter 6. Key features

CHAPTER /

Commands and scripts

The MRtrix3 software package includes a suite of tools for image analysis and visualisation. With the exception
of mrview and shview, all MRtrix3 executables are designed to be run via a terminal using a consistent command-
line interface. While many of the tools and features are discussed within tutorials found in this documentation, a
comprehensive List of MRtrix3 commands and List of MRtrix3 scripts can be found in the reference section. These
lists provide links to the help page (manual) for each executable, which can also be accessed by typing the ~help
option after the executable name on the terminal.

25

MRtrix Documentation, Release 3.0

26

Chapter 7. Commands and scripts

CHAPTER 8

Beginner DWI tutorial

This tutorial will hopefully provide enough information for a novice user to get from the raw DW image data to
performing some streamlines tractography. It may also be useful for experienced MRtrix users in terms of identifying
some of the new command names.

For all MRtrix3 scripts and commands, additional information on the command usage and available command-line
options can be found by invoking the command with the —help option. Note that this tutorial includes commands
and scripts for which there are relevant journal articles for citation; these are listed on the help pages also.

8.1 DWI geometric distortion correction

If the user has access to reversed phase-encode spin-echo image data, this can be used to correct the susceptibility-
induced geometric distortions present in the diffusion images, as well as any eddy current-induced distortions and
inter-volume subject motion. Procedures for this correct are not yet implemented in MRtrix3, though we do provide
a script called dwipreproc for interfacing with the relevant FSL tools. Due to the nuances of the operation of this
script, the reader is referred to the DWI distortion correction using dwipreproc page.

8.2 DWI brain mask estimation

In previous versions of MRtrix, a heuristic was used to derive this mask; a dedicated command is now provided:

$ dwiZ2mask <Input DWI> <Output mask>
$ mrview <Input DWI> -roi.load <Output mask>

Note that if you are working with ex-vivo data, this command will likely not give the desired results. It can also give
inconsistent results in cases of low SNR, strong B1 bias field, or even with good-quality images; it is recommended
that the output of this command should always be checked (and corrected if necessary) before proceeding with further
processing.

27

MRtrix Documentation, Release 3.0

8.3 Response function estimation

To perform spherical deconvolution, the DWI signal emanating from a single coherently-oriented fibre bundle must be
estimated. We provide a script for doing this, which has a range of algorithms and parameters. This example will use
fairly sensible defaults:

$ dwi2response tournier <Input DWI> <Output response text file>
$ shview <Output response text file>

8.4 Fibre Orientation Distribution estimation

This command performs Constrained Spherical Deconvolution (CSD) based on the response function estimated pre-
viously.

$ dwi2fod csd <Input DWI> <Input response text file> <Output FOD image> -mask <Input,,
—DWI mask>
$ mrview <Input DWI> -odf.load_sh <Output FOD image>

8.5 Whole-brain streamlines tractography

For the sake of this tutorial, we will perform whole-brain streamlines tractography, using default reconstruction pa-
rameters.

$ tckgen <Input FOD image> <Output track file> -seed_image <Input DWI mask> -mask
—<Input DWI mask> —-select <Number of tracks>
$ mrview <Input DWI> —-tractography.load <Output track file>

Note: Loading a very large number of tracks can inevitably make the mrview software run very slowly. When this
occurs, it may be preferable to instead view only a subset of the generated tracks, e.g.:

$ tckedit <Track file> <Smaller track file> —-number <Smaller number of tracks>
$ mrview <Input DWI> -tractography.load <Smaller track file>

8.6 Track Density Imaging (TDI)

TDI can be useful for visualising the results of tractography, particularly when a very large number of streamlines is
generated.

$ tckmap <Input track file> <Output TDI> -vox <Voxel size in mm>
$ mrview <Output TDI>

28 Chapter 8. Beginner DWI tutorial

CHAPTER 9

Images and other data

9.1 Image format handling in MRtrix3

MRtrix3 provides a flexible data input/output back-end in the shared library, which is used across all applications.
This means that all applications in MRtrix3 can read or write images in all the supported formats - there is no need to
explicitly convert the data to a given format prior to processing.

However, some specialised applications may expect additional information to be present in the input image. The
MRtrix .mif/.mih formats are both capable of storing such additional information data in their header, and will hence
always be supported for such applications. Most image formats however cannot carry additional information in their
header (or at least, not easily) - this is in fact one of the main motivations for the development of the MRtrix image
formats. In such cases, it would be necessary to use MRtrix format images. Alternatively, it may be necessary to
provide the additional information using command-line arguments (this is the case particularly for the DW gradient
table, when providing DWI data in NIfTI format for instance).

Image file formats are recognised by their file extension. One exception to this is DICOM: if the filename corresponds
to a folder, it is assumed to contain DICOM data, and the entire folder will be scanned recursively for DICOM images.

It is also important to note that the name given as an argument will not necessarily correspond to an actual file name
on disk: in many cases, images may be split over several files. What matters is that the text string provided as the
image specifier is sufficient to unambiguously identify the full image.

9.1.1 Coordinate system

All MRtrix3 applications will consistently use the same coordinate system, which is identical to the NIfTT standard.
Note that this frame of reference differs from the DICOM standard (typically the x & y axis are reversed). The
convention followed by MRtrix3 applications is as follows:

dimensional | description

0 (x) increasing from left to right

1 (y) increasing from posterior to anterior
2(z) increasing from inferior to superior

29

http://nifti.nimh.nih.gov/nifti-1
https://www.dabsoft.ch/dicom/3/C.7.6.2.1.1/

MRtrix Documentation, Release 3.0

All coordinates or vector components supplied to MRtrix3 applications should be provided with reference to this
coordinate system.

9.1.2 Multi-file numbered image support

It is possible to access a numbered series of images as a single multi-dimensional dataset, using a syntax specific to
MRtrix. For example:

$ mrinfo MRI-volume-[].nii.gz

will collate all images that match the pattern MRI-volume—-<number>.nii.gz, sort them in ascending numerical
order, and access them as a single dataset with dimensionality one larger than that contained in the images. In other
words, assuming there are 10 MRI-volume—-0.nii.gz to MRI-volume-9.nii.qgz, and each volume is a 3D
image, the result will be a 4D dataset with 10 volumes.

Note that this isn’t limited to one level of numbering:

S mrconvert data-[]-[].nii combined.mif

will collate all images that match the data—-number-number.nii pattern and generate a single dataset with
dimensionality two larger than its constituents.

Finally, it is also possible to explicitly request specific numbers, using Number sequences and floating-point lists
within the square brackets:

S mrconvert data-[10:20].nii combined.mif

9.1.3 Data types

MRtrix3 applications can read and write data in any of the common data types. Many MRtrix3 commands also support
the —~datatype option to specify the data type for the output image. For example:

$ mrconvert DICOM_images/ —-datatype float32 output.nii

Note: Not all image formats support all possible datatypes. The MRtrix image file formats are designed to handle all
of the possibilities listed below, while other image formats may only support a subset. When a data type is requested
that isn’t supported by the image format, a hopefully suitable alternative data type will be used instead.

Below is a list of the supported data types and their specifiers for use on the command-line. Note that MRtrix is not
sensitive to the case of the specifier: uint16le will work just as well as UInt 16LE.

30 Chapter 9. Images and other data

MRtrix Documentation, Release 3.0

Specifier Description

Bit bitwise data

Int8 signed 8-bit (char) integer

Ulnt8 unsigned 8-bit (char) integer

Int16 signed 16-bit (short) integer (native endian-ness)
Ulnt16 unsigned 16-bit (short) integer (native endian-ness)
Int16LE signed 16-bit (short) integer (little-endian)
Ulnt16LE unsigned 16-bit (short) integer (little-endian)
Int16BE signed 16-bit (short) integer (big-endian)
Ulnt16BE unsigned 16-bit (short) integer (big-endian)
Int32 signed 32-bit int (native endian-ness)

Ulnt32 unsigned 32-bit int (native endian-ness)

Int32LE signed 32-bit int (little-endian)

UlInt32LE unsigned 32-bit int (little-endian)

Int32BE signed 32-bit int (big-endian)

Ulnt32BE unsigned 32-bit int (big-endian)

Float32 32-bit floating-point (native endian-ness)

Float32LE 32-bit floating-point (little-endian)

Float32BE 32-bit floating-point (big-endian)

Float64 64-bit (double) floating-point (native endian-ness)
Float64LE 64-bit (double) floating-point (little-endian)
Float64BE 64-bit (double) floating-point (big-endian)

CFloat32 complex 32-bit floating-point (native endian-ness)
CFloat32LE | complex 32-bit floating-point (little-endian)
CFloat32BE | complex 32-bit floating-point (big-endian)

CFloat64 complex 64-bit (double) floating-point (native endian-ness)
CFloat64LE | complex 64-bit (double) floating-point (little-endian)
CFloat64BE | complex 64-bit (double) floating-point (big-endian)

9.1.4 The image transfom

The orientation of the image with respect to the scanner axes is determined by the combination of the image axes and
the location of the corner voxel. This information is encapsulated in the transformation matrix, commonly referred to
simply as the transform. You can view the transform for any image using mrinfo, for example:

$ mrinfo dwi.mif

R R I b b S b b S Sb b b b S b S SE e S b Sh b b Sb b b b b S S S S 2 S b Sh b S b S

Image: "dwi.mif"
Ak hkhkkhkhkhkhkhkhkhhkhhhkhkrhkhkrkhkhkhkhkhkhkhkhkrhkhkrhkhkhkhkhkhkhkhkhkhxkkhx*k
Dimensions: 104 x 104 x 54 x 167
Voxel size: 2.30769 x 2.30769 x 2.3 x ?
Data strides: [-1 -2 3 4]
Format: MRtrix
Data type: unsigned 16 bit integer (little endian)
Intensity scaling: offset = 0, multiplier =1
Transform: 0.9999 6.887e-09 -0.01564 -116.1
-0.001242 0.9968 -0.07943 -89.44
0.01559 0.07944 0.9967 -64.27
comments: TOURNIER DONALD (BRI) [MR] diff60_b3000_2.3_iPat2+ADC

study: BRI_Temp_backup Donald
DOB: 09/03/1977
DOS: 03/10/2007 15:58:40

(continues on next page)

9.1. Image format handling in MRtrix3 31

MRtrix Documentation, Release 3.0

(continued from previous page)

dw_scheme: [167 entries]

The ‘Transform’ field above shows the first 3 rows of the transformation matrix (technically, this is a 4x4 matrix, but
the last row is always setto [O O O 1 1). The first 3 columns correspond to the x, y & z image axes respectively,
while the last column corresponds to the location in real (scanner/world) space of the corner voxel (i.e. the voxel at
index [O 0 0 1).

In MRtrix3, the transform shown always corresponds to the transformation from image coordinates in millimeters to
scanner coordinates in millimeters - the voxel size is not taken into account, and the image axes are always normalised
to unit amplitude. This may differ from other packages.

Furthermore, MRtrix3 will always present the transform that best matches the real space. If the transform of the image
on file represents a large rotation, such that for example the image x axis is closer to the scanner’s z axis, this transform
will be modified by permutation or inversion of the axes to bring it in alignment with the expected coordinate system,
so that the first axis genuinely can be interpreted as approximately left-right, etc. To achieve this, MRtrix3 will also
modify the image Strides to match.

9.1.5 Strides

A file is simply a linear array of values. Image data on the other hand are multidimensional arrays. The image values
can therefore be ordered on file in many different ways. For example, we could start from the voxel at the left posterior
inferior corner of the image, and store intensity values in order of traversal towards the right. Once the other end of
the image is reached, we repeat the process for the row of values anterior to the last one, and repeat until the end of
the slice. At this point, we store the slice superior to the last one, until the whole image has been stored. This ordering
scheme is what is typically used in the NIfTI standard, and is commonly referred to as RAS (right anterior posterior),
referring to the direction of traversal of each axis in turn. This scheme is also often referred to as neurological, although
this term is in general much more ambiguous.

However, this is only a convention, and many other combinations are possible. For instance, it is possible to start
from the right posterior inferior corner, and raster through along the left direction, then store the next row along the
anterior direction, and finally the next slice in the superior direction. This scheme is what is normally used in the now
deprecated Analyse format, and is commonly referred to as LAS or radiological.

Of course, there are many more possibilities. For instance, sagittal DICOM images will typically be stored using a
PIR (posterior inferior right) order, since each sagittal slice is stored in order, etc. MRtrix3 applications are agnostic
to the order of storage, and can handle any such images provided the format is clear about what the order is.

In MRtrix3, the order of storage is defined by their strides. These refer to the number of voxels between a given voxel
and the next voxel along a given dimension. For instance, in a 128x128x128 image stored using RAS ordering, the
strides would be 1,128, 16384: the next voxel along the x axis is just one voxel away, while the next voxel along
the y axis is 128 values away (i.e. a whole row of x values), and so on. In contrast, if stored in LAS order, the strides
would be -1, 128, 16384, indicating that the next voxel along the x axis would actually be stored one value before
the current one.

To simplify the specification of these strides, MRtrix3 typically expects and provides symbolic strides. For example,
the RAS strides above would be expressed as 1, 2, 3, since this is sufficient to deduce the actual strides once the
image dimensions are known. Likewise, LAS would correspond to strides of -1, 2, 3, PIR to 3, -1, -2, etc. This
has the advantage that the specification of the strides is then independent of the image dimensions.

Using strides to specify ordering also allows the specification to generalise to arbitrary dimensions. For example, it is
fairly common for MRtrix3 applications to request their output for 4D images to be written with strides 2, 3, 4, 1 (if
the image format supports it): this corresponds to a volume-contiguous order, whereby the values for all volumes of a
given voxel are written next to each other on file; this often has performance advantages for applications that need to
process all values for a given voxel concurrently (as is often the case in diffusion MRI), by allowing the hardware to
make better use of resources (tractography is one such example).

32 Chapter 9. Images and other data

MRtrix Documentation, Release 3.0

Many MRtrix3 commands accept the —st ride option, which is used to specify the strides for the output image. For
example, to generate a LAS (radiological) NIfTI image for use with FSL (along with the corresponding bvecs/bvals),
you can use mrconvert along with the -stride -1,2, 3, 4 option:

$ mrconvert dwi.mif -stride -1,2,3,4 -export_grad_fsl bvecs bvals dwi.nii

Likewise, if you need to ensure the orientation is neurological (RAS), you can specify strides 1, 2, 3, 4 (or use the
1: 4 shorthand). You can also specify other combinations if required: for example -stride -2,-1, 3, 4 would
correspond to a PLS coordinate system, —~stride 2,3, 4, 1 would correspond to volume-contiguous storage (with
RAS for the spatial axes), etc.

The different formats supported by MRtrix3 differ in the range of strides that they support. The MRtrix image formats
(.mih / .mif) are the only formats to support arbitrary combinations.

Note: Not all image formats support all possible datatypes. The MRtrix image formats (.mih / .mif) are designed to
handle arbitrary strides, while other image formats may only support a limited subset. When strides are requested that
are not supported by the image format, a hopefully suitable alternative will be used instead.

Interaction between strides and transform

There is an interaction between the strides and the image transform: if the transform matrix corresponds to a 90°
rotation, this can be viewed as changing the strides without affecting the transform. Such a large rotation has changed
the order of storage relative to the anatomical labels typically used to refer to the ordering (e.g. RAS, LAS, etc). For
example, if a RAS image is modified such that its transform rotates the image axes by 90° around the y axis, this
in effect implies that voxels are now ordered IAR (i.e. right becomes inferior, anterior remains as-is, and superior
becomes right).

The MRtrix3 back-end will indeed interpret such large rotations as affecting the strides, so that if the strides are stated
as 1, 2, 3, the order of storage will always be left->right, posterior->anterior, inferior->superior relative to the scanner
axes. Note that this also implies that the transform matrix will always be modified as necessary to bring it close to the
standard coordinate system, so that the first image axis is close to the x axis, etc. This allows MRtrix3 applications to
operate on images in the knowledge that these axes are always anatomically as expected, without worrying about the
details of how this information was actually stored on file.

It is important to bear this in mind when interpreting for output of mrinfo for example, since this produces the strides
and transform as interpreted by MRtrix3, rather than those actually stored on file - although the two representations
should be strictly equivalent. If you need to inspect the information as stored on file, use mrinfo’s -norealign
option.

9.2 Supported image formats

This lists the various image formats currently supported by MRtrix3.

9.2.1 MRtrix image formats (.mih / .mif)

These MRtrix-specific image formats are closely related. They consist of a text header, with data stored in binary
format, either within the same file (.mif) or as one or more separate files (.mih). In both cases, the header structure is
the same, as detailed below. These file formats were devised to address a number of limitations inherent in currently
available formats. In particular:

* simplicity: as detailed below, the header format is deliberately kept very simple and human-readable, making it
easy to debug and edit manually if needed.

9.2. Supported image formats 33

MRtrix Documentation, Release 3.0

* extendability: any information can be stored in the header, and will simply be ignored by the application if not
recognised.

» arbitrary data organisation: voxel values can be stored in any order, making it simple to ensure for example that
all FOD coefficients for a given voxel are stored contiguously on file.

Note that MRtrix3 now includes MatLab functions to read and write MRtrix image files, and to load MRtrix tracks
files. These are located in the mat 1ab subfolder.

Compressed MRtrix image format (.mif.gz)

MRtrix3 also supports the compressed version of the single-file . mi f format, both for reading and writing.

Note: While this can reduce file sizes, it does incur a runtime cost when reading or writing the image (a process that
can often take longer than the operation to be performed), and will require the entire image to be loaded uncompressed
into RAM (MRtrix3 can otherwise make use of memory-mapping to keep RAM requirements to a minimum). For
large files, these costs can become considerable; you may find that MRtrix3 can process a large uncompressed image,
yet run out of RAM when presented with the equivalent compressed version (in such cases, you can try using gunzip
to uncompress the file manually before invoking the relevant MRtrix3 command).

Header structure

The header is the first (and possibly only) data stored in the file, as ASCII-encoded text (although other encodings
such as UTF8 may work equally well). Lines should be separated by Unix-style newlines (line-feed, *’, ASCII 0x0A),
although MRtrix will also accept DOS-type newlines.

The first line should read only mrt rix image to indicate that this is an image in MRtrix format. The last line of the
header should read only END to signal the end of the header, after which all data will be considered as binary.

All lines between these two entries must be represented as key-value pairs, as described below.

Header key-value pairs

All following lines are in the format key: value, with the value entry extending up to the end of the line. All
whitespace characters before and after the value entry are ignored. Some keys are required to read the images, others
are optional (sensible defaults will be substituted if they are absent). Recognised keys are provided in the list below,
along with the expected format of the corresponding values.

* dim [required]

the image dimensions, supplied as a comma-separated list of integers. The number of entries specifies the
dimensionality of the image. For example: dim: 192,256, 256 specifies a 192x256x256 image.

* vox [required]

the voxel size along each dimension, as a comma-separated list of floating-point values. The number of entries
should match that given in the dim entry. For example: vox: 0.9,0.898438,0.898438.

* layout [required]

specifies the organisation of the data on file. In simplest terms, it provides a way of specifying the strides
required to navigate the data file, in combination with the dim entry. It is given as a comma-separated list of
signed integers, with the sign providing the direction of data traversal with respect to voxel coordinates, and the
value providing a way of specifying the order of increasing stride.

34 Chapter 9. Images and other data

https://en.wikipedia.org/wiki/Memory-mapped_file

MRtrix Documentation, Release 3.0

For example, assuming an image with dim: 192,256,256, the entry layout: +2,-0,-1 is inter-
preted as: the shortest stride is along the y-axis (second entry), then the z-axis (third entry), and then along the
x-axis. Voxels are stored in the order left to right (positive stride) along the x-axis; anterior to posterior along the
y-axis (negative stride); and superior to inferior (negative stride) along the z-axis. Given the image dimensions,
the final strides are therefore 256x256=65536 for adjacent voxels along the x-axis, -1 for the y-axis, and -256
for the z-axis. This also implies that the voxel at coordinate [0 0 0] is located 65536 voxel values into the data
portion of the file.

* datatype [required]

the datatype used to store individual voxel values. See the listing of valid Data types. For example: datatype:
UIntl6LE

* file [required]

specifies where the binary image data are stored, in the format file: filename offset, with the offset provided in
bytes from the beginning of the file. For example: file: image.dat 0.

For the single-file format (.mif), the filename should consists of a single full-stop (‘") to indicate the current
file, and the offset should correspond to a point in the file after the END statement of the header.

For the separate header/data format (.mih), the filename should refer to an existing file in the same folder as the
header (.mih) file. Multiple such entries can be supplied if the data are stored across several files.

¢ transform [optional]

used to supply the 4x4 transformation matrix specifying the orientation of the axes with respect to real space.
This is supplied as a comma-separated list of floating-point values, and only the first 12 such values will be
used to fill the first 3 rows of the transform matrix. Multiple such entries can be provided to fill the matrix; for
example, MRtrix3 will normally produce 3 lines for the transform, with one row of 4 values per entry:

transform: 0.997986,-0.0541156,-0.033109,-74.0329
transform: 0.0540858,0.998535,-0.00179436,-100.645
transform: 0.0331575,2.34007e-08,0.99945,-125.84

* scaling [optional]

used to specify how intensity values should be scaled, provided as an offset and scale. Voxel values will be
read as value_returned = offset + scale * value_read. For example: scaling: -1,2. Defaultis 0,1 (no
modification).

In addition to these keys, it is also possible to store additional key-value pairs within the header of these image files.
If a particular key is not recognised by MRtrix3, it is simply ignored (but may be carried over to any outputs resulting
from the command, depending on the particular command).

There are some keys that are utilized by particular MRtrix3 commands in order to preserve important information
as image data are passed between commands. A prominent example is dw_scheme, which is used to embed the
diffusion gradient table within the /mage header.

9.2.2 DICOM (folder or .dcm)

DICOM format is only supported for reading. MRtrix3 applications will assume an image is in DICOM format if the
image specifier provided corresponds to a folder or ends with the . dcm extension. For a folder, the application will
scan the entire folder and its subfolders for DICOM files and generate a list of DICOM patients, studies and series. If
a single series is found within the folder, this data set will be accessed with no further interaction required. Otherwise,
the user will be prompted to select the series of interest. MRtrix3 supports data from all major manufacturers, including
Siemens mosaics and the newer single-file multi-frame format.

A separate application, dcminfo, is provided to view all DICOM header elements within a particular DICOM file,
including Siemens’ custom shadow attributes (CSA).

9.2. Supported image formats 35

MRtrix Documentation, Release 3.0

Note that no support is provided for reading the DICOMDIR entry due to case-sensitivity issues. DICOM data are
typically stored on CD or DVD on a case-insensitive filesystem. However, Unix systems will typically not access these
filesystems in a case-insensitive manner, and will fail to find the appropriate files if the case of filenames supplied in
the DICOMDIR file does not match the case of the files found on the CD or DVD.

9.2.3 NIfTI & NIfTI-2 (. nii)

These file formats are supported both for reading and writing, and allows interoperation with other packages such as
SPM or FSL. The mrinfo command can be used to determine whether a particular image is in NIfTI-1 or NIfTI-2
format.

Note: if both gform and sform orientation fields are present, the qform fields are ignored. Obviously, the qform fields
will be used if they are present on their own.

Compressed NHTI (.nii.gz)

MRtrix3 also supports compressed NIfTT images (both versions 1 & 2), for both reading and writing.

Note: While this can reduce file sizes, it does incur a runtime cost when reading or writing the image (a process that
can often take longer than the operation to be performed), and will require the entire image to be loaded uncompressed
into RAM (MRtrix3 can otherwise make use of memory-mapping to keep RAM requirements to a minimum). For
large files, these costs can become considerable; you may find that MRtrix3 can process a large uncompressed image,
yet run out of RAM when presented with the equivalent compressed version (in such cases, you can try using gunzip
to uncompress the file manually before invoking the relevant MRtrix3 command).

9.2.4 FreeSurfer formats (.mgh / .mgz)

MRtrix3 supports both of these formats for reading and writing.

9.2.5 Analyse format (.img / .hdr)

This file format is supported both for reading and writing. However, when writing, the newer NIfTT standard will be
used, since the Analyse format cannot store crucial information such as the image transform, and is hence deprecated.
If these images are actually stored as NIfTI, they will be handled appropriately according to the standard.

Note: In order to specify an Analyse format image on the command line, type the name of its data file (» . img), not
the header file.

Warning: By default, Analyse format images will be assumed to be stored using RAS (radiological) convention.
This can modified in the Configuration file, by setting the Analyse.LeftToRight entry to true.

36 Chapter 9. Images and other data

http://www.fil.ion.ucl.ac.uk/spm/
http://fsl.fmrib.ox.ac.uk/fsl/
https://en.wikipedia.org/wiki/Memory-mapped_file

MRtrix Documentation, Release 3.0

9.3 Fixel image (directory) format

Images for representing discrete multi-fibre models are sparse in nature (i.e. different voxels may have different
numbers of fibre populations - a.k.a ‘fixels <dix_fix>‘__), and different models have different parameter requirements
per fixel (e.g. orientation, volume fraction, fanning, tensors etc). This fixel image format overcomes several issues in
storing such data in either traditional 4D images or a custom format (such as the legacy Legacy MRtrix Sparse Format
(.msh / .msf)).

9.3.1 Requirements

This new format has been designed with the following requirements in mind:

» Space saving. Because different voxels may have different numbers of fixels, it is inefficient to store data using
4-dimensional images, since the size of the 4th dimension must accommodate the voxel with the highest number
of fixels. A sparse representation on disk is therefore more efficient.

« Easily read and written by other software packages to enable inter-operability of fixel-based DWI models.

¢ Flexible enough to allow for both fixel-specific model parameters (e.g. volume fractions, fanning), and voxel-
specific parameters (e.g. hindered isotropic compartment). The format should also support any number of model
parameters.

¢ Self-documenting. Users should be able to easily infer what kind of data is included in the model. Developers
should also easily understand the data layout, without having to read in special fields in the image header.

¢ Minimise the need for supporting commands. We wanted to avoid the need to have dedicated commands for
performing basic operations on the data (e.g. math/calculator operations, thresholding, histogram generation
etc).

« Extendability. Users should be able to add components to an existing sparse image. E.g. a mask to label fixels
of interest, or additional test-statistic output from a group analysis.

9.3.2 Specifications

In the fixel format we have opted to leverage the file system by storing data belonging to a single sparse DWI model
inside a single directory/folder (in contrast to the old Legacy MRtrix Sparse Format (.msh/.msf) where all data is stored
inside a single file). Effectively the directory becomes the ‘dataset’. While this implies that all data files must be kept
together inside the directory, and can be tampered with (or accidently deleted) by users, we believe the transparency
and accessibility of the data is beneficial and enables all of the above requirements to be met.

All files types saved inside the format are in either NIfTI-2 format (for maximum compatibility with other packages)
or MRtrix image formats (.mih / .mif). To help describe the format and the layout of the files within the directory, we
have used an example of how a ball and racket-like model may be stored:

Example
(fol

Index File Type

9.3. Fixel image (directory) format 37

MRtrix Documentation, Release 3.0

9.3.3 Fixel format file types

Index File

* 4D image (ixj x k x 2).

* The index file is required, with fixed naming (index.nii or index.mif).

The first 3D volume in the 4th dimension stores the number of elements (fixels) per voxel.

* The second volume in the 4th dimension stores the index of the first element (fixel) in that voxel; indices for the
subsequent elements in each voxel are inferred to be sequential.

Fixel Data File

* 3D image (n x p x 1) where n is the total number of elements in the image, and p is the number of parameters
per element (e.g. 3 for direction.nii, 1 for volume.nii, or 6 for a multi-tensor model).

* For each voxel, data for the elements within that voxel must be stored within sequential indices in the first
dimension.

* Easily identified as a data file type because the size of the image is 1 in the 3rd dimension

* Any number of Fixel Data File types may be present in the directory. In the example image above, the volume
fraction and fanning angle parameters have been saved as separate files; however the format is flexible and
allows for multiple parameters, p, per element.

* Any naming convention can be used for Fixel Data Files, with the exception of: - The directions file (see below).
- If a particular set of commands expect to write and subsequently read one or more data files with a fixed name,
then manually renaming such files may prevent the operation of that set of commands.

Note: The number of fixels in a whole-brain image can be very large (> 100,000). The NIfTI-1 format therefore
cannot be used in this context, as it restricts the total number of voxels along any dimension of the image to 65,535.
This is why either NIfTI-2 or MRtrix image formats (.mih /.mif) must be used.

Fixel Direction File

All fixel-based DWI models must specify the direction of each fixel.

* Directions for each fixel must be saved within a single file named either directions.niiordirections.
mif.

* This can be considered as a special type of fixel data file, with dimensions (n x 3 x 1).

* Directions must be specified with respect to the scanner coordinate frame, in cartesian coordinates.

Voxel Data File

* 3D or 4D image
* Any number of Voxel Data Files may be stored in the directory
* Must have the same resolution and header transform as the index image

» Naming of files is flexible

38 Chapter 9. Images and other data

MRtrix Documentation, Release 3.0

* The 4th dimension is optional, but allows for multiple parameters per voxel to be stored (e.g. 6 tensor coefficients
of the ‘hindered’ compartment in CHARMED)

9.3.4 Usage

Because the fixel format leverages the file system to store all fixel data within a single directory, interacting with fixel
data in MRtrix3 may require user input and output arguments to be either: 1) the path to the fixel format directory; or 2)
specific fixel data files within the directory. For example, fod2fixel requires the name of the containing directory
and the names of the output fixel data files to be stored inside the directory:

fod2fixel patientO0l/fod.mif patient0l/fixel_directory -afd afd.mif -disp dispersion.
—mif

In this example, a new fixel format directory is created, with the name patient0l_fixel directory; this
includes creation of the requisite index and directions files. Fixel Data Files for two fixel-specific measures (AFD and
dispersion) are then additionaly saved inside this directory.

Other commands, such as fixel2voxel, may only require the fixel data file:

fixel2voxel patient0l/fixel_directory/afd.mif sum patientO0l/total_afd.mif

A major benefit of the directory-based format is that existing commands for operating on traditional images can be
used to manipulate fixel data. For example, to threshold fixels based on their AFD value:

mrthreshold patient0l/fixel_directory/afd.mif -abs 0.1 patient0l/fixel_directory/afd_
—mask.mif

Other commands like mrhistogram, mrcalc and mrstats can also be used on Fixel Data Files. For example, to
compute the mean dispersion over all fixels in a mask:

mrstats —output mean -mask patient0l/fixel_directory/afd _mask.mif patient0l/fixel_
—directory/dispersion.mif

9.3.5 Viewing fixel data in mrview

Fixel data can be visualised using the “Fixel Plot” tool in mrview. Any image within the fixel directory can be
opened by the file chooser. By default the fixels will be coloured based on the file selected when loaded (e.g. if you
select the fixel directions file, fixels will be colour-coded by direction; if afd.mif is selected they will be coloured
by AFD value). Irrespective of the file selected to view the fixel file, all other fixel file types in the fixel directory will
be detected and available for use in colour-coding and thresholding fixels via a combo box in the Fixel Plot tool. This
enables advanced visualisations such as thresholding fixels by p-value while colour-coding by effect size.

9.4 Legacy MRtrix Sparse Format (.msh / .msf)

This is an old lecacy format prevously used for applications where the number of discrete elements within a voxel may
vary between voxels (typically used to store fixels). This format has been superseded by the new directory-based Fixe/
image (directory) format. While all fixel-related commands now only use the new format, files stored in the legacy
format can still be viewed in mrview.

Much like the standard MRtrix image formats (.mih / .mif), there are two different image file extensions available.
One (.msh) separates the image header information and raw data into separate files, while the other (.msf) encodes all
information relevant to the image into a single file.

9.4. Legacy MRtrix Sparse Format (.msh / .msf) 39

MRtrix Documentation, Release 3.0

However unlike these established formats, sparse images contain fwo separate raw data fields. The first of these
behaves identically to standard images: a single intensity value for every image element. The second stores sparse
image data. For any particular image element, the intensity value within the standard image field defines a pointer to
a location within the sparse image field, where the sparse data relevant for that image element can be found.

9.4.1 Additional image header features

These image formats have some features within the image header that differ from the standard MRtrix image formats:
* The ‘magic number’ that appears at the start of the file must read ‘mrtrix sparse image’.

» Key:value pair ‘sparse_data_name’ defines the name of the class used in the sparse data field. This class name is
typically not reader-friendly; the value that appears is that provided by the C++ call typeid (XYZ) .name ()
for a class called XYZ. This is necessary to ensure that the data stored in the sparse field can be interpreted
correctly.

» Key:value pair ‘sparse_data_size’ defines the size (in bytes) of the class used to store the sparse data.

 The ‘datatype’ field MUST be a 64-bit integer, with the same endianness as the system. A 64-bit integer type is
required because the standard image data provides pointers to the sparse data in memory, while the endianness
is tested to ensure that the sparse data can be interpreted correctly. Note that sparse images cannot be transferred
and used between systems with different endianness.

* In addition to the ‘file’ key, a second key ‘sparse_file’ is also required, which provides the path to the beginning
of the sparse image data. In the .msf format, this provides an offset from the start of the file to the start of the
sparse data field; in the .msh format, a second associated data file with the extension .sdat is generated on image
creation, and the path to this file is defined in the header.

9.4.2 Sparse data storage

Within the sparse data field, there is no delimiting information or identifying features; the image format relies on the
integers stored in the standard image field to provide offset pointers to appropriate locations within the sparse field.

From the data position defined by such an offset, the first 4 bytes provide a 32-bit integer (with native endianness),
which specifies the number of discrete elements stored. This is followed by data to fill precisely that number of
instances of the sparse data class. Note that no endianness conversion can be performed on this data; data is read and
written using a straight memory copy.

9.5 Tracks file format (. tck)

The format for track files is similar to that for MRtrix image formats (.mih /.mif). It consists of a text header in the
same key: value format, ending with a single ‘END’ statement, and followed by binary data.

The first line of the header should read mrtrix tracks to indicate that the file contains tracks in MRtrix format.
Further key: wvalue pairs typically provide information about the parameters used to produce the tracks, and for
the most part are not required to read the data. The only required keys are the following:

« file

afile: . offset entry is required to specify the byte offset from the beginning of the file to the start
of the binary track data. At this stage, only the single-file format is supported - in other words the filename part
must be specified as ‘.” (see above for details).

* datatype

40 Chapter 9. Images and other data

MRtrix Documentation, Release 3.0

specifies the datatype (and byte order). At this points only the Float32 data type is supported, either as little-
endian (LE) or big-endian (BE).

The binary track data themselves are stored as triplets of floating-point values (at this stage in 32 bit floating-
point format), one per vertex along the track. Tracks are separated using a triplet of NaN values. Finally, a triplet
of Inf values is used to indicate the end of the file.

9.5. Tracks file format (. tck) 41

MRtrix Documentation, Release 3.0

42

Chapter 9. Images and other data

cHAaPTER 10

Command-line usage

MRtrix3 generally follows a relatively standard Unix syntax, namely:

$ command [options] argumentl argument?2

If you need to become familiar with using the command-line, there are plenty of tutorials online to get you started.
There are however a few notable features specific to MRtrix3, which are outlined below.

10.1 Ordering of options on the command-line

Options can typically occur anywhere on the command-line, in any order - they do not usually need to precede the
arguments.

For instance, all three of the lines below will have the same result:

$ command -optionl -option2 argumentl argument?2
$ command argumentl argument2 -optionl -option2
$ command -option2 argumentl argument2 -optionl

Care must however be taken in cases where a command-line option itself has an associated compulsory argument. For
instance, consider a command-line option —number, which allows the user to manually provide a numerical value in
order to control some behaviour. The user’s desired value must be provided immediately after ‘—number’ appears on
the command-line in order to be correctly associated with that particular option.

For instance, the following would be interpreted correctly:

’$ command -—number 10 argumentl argument2

But the following would not:

’$ command —number argumentl 10 argument2

The following cases would also not be interpreted correctly by MRtrix3, even though some other softwares may
interpret their command-line options in such ways:

43

MRtrix Documentation, Release 3.0

$ command -numberl0 argumentl argument?2
$ command --number=10 argumentl argument2

There are a few cases in MRtrix3 where the order of options on the command-line does matter, and hence the above
demonstration does not apply:

e mrcalc: mrcalc is a stack-based calculator, and as such, the order of inputs and operations on the command-
line determine how the mathematical expression is formed.

e mrview: mrview includes a number of command-line options for automatically configuring the viewing win-
dow, and importing data into its various tools. Here the order of such options does matter: the command line
contents are read from left to right, and any command-line options that alter the display of a particular image
or data open within a tool is applied to the most recent data (image or otherwise) opened by the tool associated
with that option.

* Scripts: A subset of the Python scripts provided with MRtrix3 (currently 5ttgen and dwiZresponse) require the
selection of an algorithm, which defines the approach that the script will use to arrive at its end result based on
the data provided. The name of this algorithm must be the first argument on the command-line; any command-
line options provided prior to this algorithm name will be silently ignored.

10.2 Number sequences and floating-point lists

Some options expect arguments in the form of number sequences or floating-point lists of numbers. The former
consists or a series of integers separated by commas or colons (no spaces), with colons indicating a range, optionally
with an increment (if different from 1). For example:

e 1,4,8becomes [1 4 8]

e 3,6:12,2becomes [3 6 7 8 9 10 11 12 2]

¢ 1:3:10,8:2:0becomes [1 4 7 10 8 6 4 2 0]
Note that the sign of the increment does not matter, it will always run in the direction required.
Likewise, floating-point lists consist of a comma-separated list of numbers, for example:

©2.47,-8.2223,1.45e-3

10.3 Using shortened option names

Options do not need to be provided in full, as long as the initial part of the option provided is sufficient to unambigu-
ously identify it.

For example:

’$ mrconvert —-debug in.mif out.nii.gz

is the same as:

’$ mrconvert -de in.mif out.nii.gz

but will conflict with the —~datatype option if shortened any further:

$ mrconvert -d in.mif out.nii.gz
mrconvert: [ERROR] several matches possible for option "-d": "-datatype, "-debug"

44 Chapter 10. Command-line usage

MRtrix Documentation, Release 3.0

10.4 Unix Pipelines

The output of one program can be fed straight through to the input of another program via Unix pipes in a single
command. The appropriate syntax is illustrated in this example:

$ dwi2tensor /data/DICOM_folder/ - | tensor2metric - —-vector ev.mif
dwi2tensor: [done] scanning DICOM folder "/data/DICOM_folder/"
dwi2tensor: [100%] reading DICOM series "ep2d_diff"...

dwi2tensor: [100%] reformatting DICOM mosaic images...

dwi2tensor: [100%] loading data for image "ACME (hm) [MR] ep2d_diff"...
dwil2tensor: [100%]

tensor2metric: [100%] computing tensor metrics...

estimating tensor components...

This command will execute the following actions:

1. dwi2tensor will load the input diffusion-weighted data in DICOM format from the folder /data/
DICOM_folder/ and compute the corresponding tensor components. The resulting data set is then fed into
the pipe.

2. tensor2metric will access the data set from the pipe, generate an eigenvector map and store the resulting

data setas ev.mif.

The two stages of the pipeline are separated by the | symbol, which indicates to the system that the output of the first
command is to be used as input for the next command. The image that is to be fed to or from the pipeline is specified
for each program using a single dash — where the image would normally be specified as an argument.

For this to work properly, it is important to know which arguments each program will interpret as input images, and
which as output images. For example, this command will fail:

dwi2tensor - /data/DICOM_folder/ | tensorZ2metric — ev.mif

In this example, dwi2tensor will hang waiting for input data (its first argument should be the input DWI data set).
This will also cause tensor2metric to hang while it waits for dwi2tensor to provide some input.

10.4.1 Advanced pipeline usage

Such pipelines are not limited to two programs. Complex operations can be performed in one line using this technique.
Here is a longer example:

$ dwi2tensor /data/DICOM_folder/ - | tensor2metric - —-vector - mrcalc —
mask.nii -mult - | mrview -

dwi2tensor: [done] scanning DICOM folder "/data/DICOM_folder/"
dwi2tensor: [100%] reading DICOM series "ep2d_diff"...

dwi2tensor: [100%] reformatting DICOM mosaic images...

dwi2tensor: [100%] loading data for image "ACME (hm) [MR] ep2d_diff"...
dwi2tensor: [100%] estimating tensor components...

tensor2metric: [100%] computing tensor metrics...

mrcalc: [100%] computing: (/tmp/mrtrix—-tmp-VihKrg.mif * mask.nii)

This command will execute the following actions:

1. dwi2tensor will load the input diffusion-weighted data in DICOM format from the folder
/data/DICOM_folder/ and compute the corresponding tensor components. The resulting data set is then fed
into the pipe.

2. tensor2metric will access the tensor data set from the pipe, generate an eigenvector map and feed the
resulting data into the next stage of the pipeline.

10.4. Unix Pipelines 45

http://en.wikipedia.org/wiki/Pipeline_%28Unix%29

MRtrix Documentation, Release 3.0

3. mrcalc will access the eigenvector data set from the pipe, multiply it by the image mask.nii, and feed the
resulting data into the next stage of the pipeline.

4. mrview will access the masked eigenvector data set from the pipe and display the resulting image.

10.4.2 How is it implemented?

The procedure used in MRtrix3 to feed data sets down a pipeline is somewhat different from the more traditional use
of pipes. Given the large amounts of data typically contained in a data set, the ‘standard’ practice of feeding the entire
data set through the pipe would be prohibitively inefficient. MRtrix3 applications access the data via memory-mapping
(when this is possible), and do not need to explicitly copy the data into their own memory space. When using pipes,
MRtrix3 applications will simply generate a temporary file and feed its filename through to the next stage once their
processing is done. The next program in the pipeline will then simply read this filename and access the corresponding
file. The latter program is then responsible for deleting the temporary file once its processing is done.

This implies that any errors during processing may result in undeleted temporary files. By default, these
will be created within the /tmp folder (on Unix, or the current folder on Windows) with a filename of
the form mrtrix-tmp-XXXXXX.xyz (note this can be changed by specifying a custom TmpFileDir and
TmpFilePrefix in the Configuration file). 1If a piped command has failed, and no other MRtrix programs are
currently running, these can be safely deleted.

10.4.3 Really advanced pipeline usage

As implemented, MRtrix3 commands treat image file names that start with the TmpFilePrefix (default is
mrtrix-tmp-) as temporary. When reading the image name from the previous stage in the pipeline, the image
file name will trivially match this. But this also means that it is possible to provide such a file as a normal argument,
and it will be treated as a temporary piped image. For example:

$ mrconvert /data/DICOM/ -datatype float32 -

mrconvert: [done] scanning DICOM folder "/data/DICOM/"

mrconvert: [100%] reading DICOM series "ep2d_diff"...

mrconvert: [100%] reformatting DICOM mosaic images...

mrconvert: [100%] copying from "ACME (hm) [MR] ep2d_diff" to "/tmp/mrtrix-tmp-zcDlnr.
omif". ..

/tmp/mrtrix-tmp-zcDlnr.mif

Notice that the name of the temporary file is now printed on the terminal, since the command’s stdout has not be piped
into another command, and we specified — as the second argument. You’ll also see this file is now present in the /tmp
folder. You can use this file by copy/pasting it as an argument to another MRtrix command (be careful though, it will
be deleted once this command exits):

$ mrstats /tmp/mrtrix-tmp-zcDlnr.mif

channel mean median std. dev. min max o
— count
[0] 1053.47 96 1324.71 0 3827 o
— 506880
[1] 173.526 84 140.645 0 549 o
— 506880

This allows for a non-linear arrangement of pipelines, whereby multiple pipelines can feed into a single command.
This is achieved by using the shell’s output capture feature to insert the temporary file name of one pipeline as an ar-
gument into a second pipeline. In BASH, output capture is achieved using the $ (commands) syntax, or equivalently
using backticks: * commands " . For example:

46 Chapter 10. Command-line usage

MRtrix Documentation, Release 3.0

$ dwil2tensor /data/DICOM/ - | tensor2metric - -mask $(dwi2mask /data/DICOM/ - |,
—maskfilter - erode -npass 3 -) -vec ev.mif -fa - | mrthreshold - -top 300 highFA.
—mif

dwiZ2mask: [done] scanning DICOM folder "/data/DICOM/"

dwi2tensor: [done] scanning DICOM folder "/data/DICOM/"

dwi2mask: [100%] reading DICOM series "ep2d_diff"...

dwi2tensor: [100%] reading DICOM series "ep2d_diff"...

dwiZmask: [100%] reformatting DICOM mosaic images...

dwi2tensor: [100%] reformatting DICOM mosaic images...

dwiZmask: [100%] loading data for image "ACME (hm) [MR] ep2d_diff"...
dwi2tensor: [100%] loading data for image "ACME (hm) [MR] ep2d_diff"...
dwiZ2mask: [100%] finding min/max of "mean b=0 image"...

dwiZmask: [done] optimising threshold...

dwi2mask: [100%] thresholding...

dwi2tensor: [100%] estimating tensor components...

dwiZ2mask: [100%] finding min/max of "mean b=1000 image"...

dwi2mask: [done] optimising threshold...

dwi2mask: [100%] thresholding...

dwi2mask: [done] computing dwi brain mask...

maskfilter: [100%] applying erode filter to image -...

tensor2metric: [100%] computing tensor metrics...

mrthreshold: [100%] thresholding "/tmp/mrtrix—-tmp-UHvhc2.mif" at 300th top voxel...

In this one command, we asked the system to perform this non-linear pipeline:

dwi2tensor \
| -—> tensor2metric ---> mrthreshold

dwi2mask —---> maskfilter /

More specifically:

1. dwi2tensor will load the input diffusion-weighted data in DICOM format from the folder /data/DICOM/ and
compute the corresponding tensor components. The resulting data set is then fed into the pipe.

1. meanwhile, dwi2mask will generate a brain mask from the DWI data, and feed the result into a second
pipeline.
2. maskfilter will access the mask from this second pipeline, erode the mask by 3 voxels, and output the

name of the temporary file for use as an argument by the next stage.

2. tensor2metric will access the tensor data set from the first pipe, generate eigenvector and FA maps within
the mask provided as an argument by the second pipeline, store the eigenvector map in ev.mif and feed the
FA map into the next stage of the pipeline.

3. mrthreshold will access the FA image from the pipe, identify the 300 highest-valued voxels, and produce a
mask of these voxels, stored in highFA.mif.

10.4. Unix Pipelines a7

MRtrix Documentation, Release 3.0

48

Chapter 10. Command-line usage

cHAPTER 11

Configuration file

The behaviour of a number of aspects of MRtrix3 can be controlled by the user via the MRtrix3 configuration file.
Note, that this file is distinct from the build configuration file that is generated as part of the MRtrix3 installation, but
rather is used to specify default settings for a number of parameters, many of which relate to data visualisation when
using mrview.

For all available configurable options, please refer to the configuration file options page.

11.1 Location

MRtrix3 applications will attempt to read configuration information from a two locations. The system-wide configu-
ration file /etc/mrtrix.conf is read first if present, followed by the user-specific configuration ~/ .mrtrix.
conft. If both system and user-specific configuration files exist, the parameters specified in the two configuration files
will be aggregated, with user-specified configuration options taking precedence in the case of a conflict. In the case
that a particular configuration parameter is not defined, MRtrix3 will resort to hard-coded defaults.

11.2 Format

The configuration files are text files, with each line containing a key: value pair. For example

Analyse.LeftToRight: false
NumberOfThreads: 2

Note: Key names are case-sensitive.

The value entry may be interpreted by MRtrix3 applications as either:
¢ Boolean: allowed values here are true or false

* Integer: any integer value

49

../reference/config_file_options.html

MRtrix Documentation, Release 3.0

* Floating—-point: any floating-point value
* Text: any text string, without any further interpretation

The list of all configuration file options can be found here.

50 Chapter 11. Configuration file

../reference/config_file_options.html

cHAPTER 12

DWI denoising

MRtrix now includes a new command dwidenoise which implements DWI data denoising and noise map estimation
by exploiting data redundancy in the PCA domain (Veraart et al., 2016a, 2016b). The method uses the prior knowledge
that the eigenspectrum of random covariance matrices is described by the universal Marchenko Pastur distribution.

12.1 Recommended use

Image denoising must be performed as the first step of the image-processing pipeline. Interpolation or smoothing in
other processing steps, such as motion and distortion correction, may alter the noise characteristics and thus violate
the assumptions upon which MP-PCA is based.

Typical use will be:

dwidenoise dwi.mif out.mif -noise noise.mif

where dwi.mif contains the raw input DWI image, out .mif is the denoised DWI output, and noise .mif is the
estimated spatially-varying noise level.

We always recommend eyeballing the residuals, i.e. out - in, as part of the quality control. The lack of anatomy in the
residual maps is a marker of accuracy and signal-preservation during denoising. The residuals can be easily obtained
with

mrcalc dwi.mif out.mif -subtract res.mif
mrview res.mif

The kernel size, default 5x5x5, can be chosen by the user (option: —extent). For maximal SNR gain we suggest to
choose N>M for which M is typically the number of DW images in the data (single or multi-shell), where N is the
number of kernel elements. However, in case of spatially varying noise, it might be beneficial to select smaller sliding
kernels, e.g. N~M, to balance between precision, accuracy, and resolution of the noise map.

Note that this function does not correct for non-Gaussian noise biases yet.

51

MRtrix Documentation, Release 3.0

12.2 References

1. J. Veraart, E. Fieremans, and D.S. Novikov Diffusion MRI noise mapping using random matrix theory. Magn.
Res. Med. 76(5), pp. 1582-1593 (2016), doi: 10.1002/mrm.26059

2. J. Veraart, D.S. Novikov, D. Christiaens, B. Ades-aron, J. Sijbers, and E. Fieremans Denoising of diffusion MRI
using random matrix theory. Neurolmage 142, pp. 394-406 (2016), doi: 10.1016/j.neuroimage.2016.08.016

52 Chapter 12. DWI denoising

http://dx.doi.org/10.1002/mrm.26059
http://dx.doi.org/10.1016/j.neuroimage.2016.08.016

cHAPTER 13

DWI distortion correction using dwipreproc

The dwipreproc script, responsible for performing general pre-processing of DWI series, has been completely
re-designed as part of the MRtrix3 3.0_RC1 update. Although the ‘guts’ of the script are completely new, the
fundamental operation - eddy current-induced distortion correction, motion correction, and (optionally) susceptibility-
induced distortion correction, using FSL’s eddy / topup / applytopup tools, remains the same. While the user
interface remains reasonably similar to that provided previously (examples to come), they are slightly different.

The major benefit of the new design is that MRtrix3 is now capable of not only capturing the relevant phase encoding
information from DICOM headers, but also using that information within dwipreproc to internally generate the
necessary phase encoding table files in order to run these FSL tools. This comes with a number of benefits:

* It makes it possible to acquire and process a wider range of DWI acquisition designs, without requiring that the
user laboriously manually construct the phase encoding tables that these FSL tools require.

* It means that automated pre-processing pipelines (e.g. these two works-in-progress) can be applied to provided
data without requiring manual intervention to specify this information.

* Over time, as MRtrix 0.3.16 code is used to import DICOMs (and hence capture the phase encoding information)
and the relevant code is thoroughly tested, there will be less onus on users to track and specify the type of phase
encoding acquisition performed.

Note: Although the dwipreproc script is provided as part of MRtrix3 in the hope that users will find it useful,
the major image processing steps undertaken by this script are still performed using tools developed at FMRIB and
provided as part of FSL. It is therefore essential that the appropriate references be cited whenever this script is used!

The dwipreproc script now has four major ‘modes’ of operation, that can be selected at the command-line using
the —rpe_ « options. Note that exactly one of these options *must* be provided. The following are example use
cases; specific parameters, file names etc. may need to be altered to reflect your particular data.

1. No variation in phase encoding

All DWI volumes are acquired with precisely the same phase encoding direction and EPI readout time,
and no additional spin-echo »=0 images are acquired over and above those interleaved within the DWI
acquisition. It is therefore impossible to estimate the inhomogeneity field using t opup, and eddy will
perform motion and eddy current correction only.

53

https://github.com/BIDS-Apps/FibreDensityAndCrosssection
https://github.com/BIDS-Apps/MRtrix3_connectome

MRtrix Documentation, Release 3.0

Example DICOM image data:

’OOZ_*_DWI_phaseAP/

Old usage (i.e. prior to MRtrix 0.3.16):

’s dwipreproc AP 002_-_DWI_phaseAP/ dwi_preprocessed.mif —-rpe_none

New usage:

$ dwipreproc 002_-_DWI_phaseAP/ dwi_preprocessed.mif -rpe_none -pe_dir AP [-
—readout_time 0.1

Note that here (and in subsequent examples), providing the EPI readout time manually is optional (if
omitted, the ‘sane’ default of 0.1s will be assumed). The precise scaling of this parameter is not expected
to influence results provided that the readout time is equivalent for all 5=0 / DWI volumes.

. Reversed phase encode b=0 pair(s)

All DWI volumes are acquired with precisely the same phase encoding direction and EPI readout time.
In addition, one or more pairs of spin-echo b=0 EPI volumes are provided, where half of these volumes
have the same phase encoding direction and readout time as the DWIs, and the other half have precisely
the opposite phase encoding direction (but the same readout time). These additional images are therefore
used to estimate the inhomogeneity field, but do not form part of the output DWI series.

Example DICOM image data:

002_-_ep2dse_phaseAP/
003_-_ep2dse_phasePA/
004_-_DWI_phaseAP/

Old usage (i.e. prior to MRtrix 0.3.16):

$ dwipreproc AP 004_-_DWI_phaseAP/ dwi_preprocessed.mif -rpe_pair 002_—-_
—ep2dse_phaseAP/ 003_-_ep2dse_phasePA/

New usage:

$ mrcat 002_-_ep2dse_phaseAP/ 003_-_ep2dse_phasePA/ blOs.mif -axis 3
$ dwipreproc 004_-_DWI_phaseAP/ dwi_preprocessed.mif —-pe_dir AP -rpe_pair -
—~se_epi bOs.mif [-readout_time 0.1]

. Reversed phase encoding for all DWIs

For all diffusion gradient directions & b-values, two image volumes are obtained, with the opposite phase
encoding direction with respect to one another. This allows for the combination of the two volumes
corresponding to each unique diffusion gradient direction & strength into a single volume, where the
relative compression / expansion of signal between the two volumes is exploited.

Example DICOM image data:

002_-_DWI_64dir_phaseLR/
003_—-_DWI_64dir_phaseRL/

Old usage (i.e. prior to MRtrix 0.3.16):

$ dwipreproc LR 002_—-_DWI_64dir_phaseLR/ dwi_preprocessed.mif -rpe_all 003_—_
—DWI_64dir_phaseRL/

54

Chapter 13. DWI distortion correction using dwipreproc

MRtrix Documentation, Release 3.0

New usage:

$ mrcat 002_-_DWI_64dir_phaseLR/ 003_-_DWI_64dir_phaseRL/ all _DWIs.mif -axis,
3

$ dwipreproc all_DWIs.mif dwi_preprocessed.mif -pe_dir LR -rpe_all [-
—readout_time 0.1]

Note that in this particular example, the dwipreproc script will in fact extract the b=0 volumes from the
input DWIs and use those to estimate the inhomogeneity field with topup. If additional b=0 images are
also acquired, and it is desired to instead use those images to estimate the inhomogeneity field only, the
—se_epi option can be used.

4. Arbitrary phase encoding acquisition
In cases where either:

* An up-to-date version of MRtrix3 has been used to convert from DICOM, such that phase encoding
information is embedded in the image header; or:

* Image data of unknown origin are to be processed by an automated pipeline without user interven-
tion, and therefore phase encoding information must be provided using data files associated with the
input images (such as JSON files in the BIDS standard),

it is possible for the dwipreproc script to automatically determine the appropriate steps to perform
based on the phase encoding configuration of the image data presented to it.

Usage:

$ mrcat <all_input_DWIs> all dwis.mif —-axis 3

$ mrcat <all extra b=0_volumes> all_bOs.mif —-axis 3 (optional)

$ dwipreproc all_dwis.mif dwi_preprocessed.mif -rpe_header [-se_epi all_bOs.

Warning: With regards to Option 4 (using phase encoding information as it is stored in the header),
note that this functionality is preliminary and should not be trusted blindly. It is impossible for us to
check and test all possible usage scenarios. Furthermore, if this information is imported or exported
to/from the image header, this requires reorientation due to the way in which MRtrix3 handles image
orientations internally, which introduces additional mechanisms by which the tracking of phase en-
coding orientations may go awry. Results should therefore be checked manually if using / testing this
mechanism.

When one of the options 1-3 are used, internally the dwipreproc script generates the effective phase encoding
table given the user’s images and command-line input; this is what is passed to topup / applytopup / eddy. If
one of these options is used, but there is actually phase encoding information found within the image header(s), the
script will compare the user’s phase encoding specification against the header contents, and produce a warning if it
detects a mismatch (since either the phase encoding design is not what you think it is, or the import of phase encoding
information from DICOM is awry; either warrants further investigation).

55

http://www.json.org/
http://bids.neuroimaging.io/

MRtrix Documentation, Release 3.0

56

Chapter 13. DWI distortion correction using dwipreproc

cHAPTER 14

Response function estimation

A compulsory step in spherical deconvolution is deriving the ‘response function (RF)’, which is used as the ker-
nel during the deconvolution step. For the white matter, this is the signal expected for a voxel containing a single,
coherently-oriented fibre bundle. While some groups prefer to define this function using some ad-hoc template func-
tion (e.g. a diffusion tensor with empirical diffusivities), the MRtrix contributors are in preference of deriving this
function directly from the image data, typically by averaging the diffusion signal from a set of empirically-determined
‘single-fibre (SF)’ voxels.

The process of estimating this function from the data is however non-trivial; there is no single unambiguous way
in which this should be done. Earlier in the beta version of MRtrix3, we provided a command dwi2response
that advertised automated determination of the response function, based on a published method with a few additional
enhancements. Unfortunately user testing showed that this algorithm would not produce the desired result in a number
of circumstances, and the available command-line options for altering its behaviour were not intuitive.

As a result, we are now instead providing dwiZresponse as a script. This was done for a few reasons. Firstly, it
means that we can provide multiple different mechanisms / algorithms for response function estimation, all accessible
within the one script, allowing users to experiment with different approaches. Secondly, because these Python scripts
are more accessible to most users than C++ code, the algorithms themselves can be modified, or some may even
choose to try devising their own heiristics for response function estimation. Thirdly, it reinforces the fact that there is
unfortunately not a black-box, one-size-fits-all solution to this problem.

Here I will discuss some of the technical aspects of response function estimation, and describe the mechanisms by
which the currently provided algorithms work. If however you are not interested in the nitty-gritty of this process, feel
free to scroll to the bottom of the page.

14.1 Necessary steps

Looking at the process of response function estimation in full detail, there are four crucial steps. For each of these, I
will also briefly mention the typical process used.

1. Select those image voxels that are to be used when determining the response function - the ‘single-fibre mask’.
Typical: Varies.

57

http://www.sciencedirect.com/science/article/pii/S1053811913008367

MRtrix Documentation, Release 3.0

2. Estimate the direction of the underlying fibres in each voxel. Typical: Often the diffusion tensor fit is still used
for this purpose; though CSD itself can also be used as long as an initial response function estimate is available.

3. Rotate the signal measured in each single-fibre voxel in such a way that the estimated fibre direction coincides
with the z-axis. Typical: This may be done by rotating the diffusion gradient table according to the estimated
fibre direction; or if the diffusion signal is converted to spherical harmonics, then a spherical convolution can be
used.

4. Combine these signals to produce a single response function. Typical: The m=0 terms of the spherical harmonic
series (which are rotationally symmetric about the z-axis) are simply averaged across single-fibre voxels.

Of these steps, the first is the one that has caused the greatest difficulty, and is also the principle mechanism where the
provided response function estimation algorithms vary. It will therefore be the primary focus of this document, though
note that the other aspects of this process may also change with ongoing development.

14.2 dwi2response algorithms

14.21 fa

In the previous version of MRtrix (‘0.2”), the following heuristic was suggested in the documentation for deriving the
response function:

* Erode a brain mask by a few voxels, to omit any voxels near the edge of the brain;
* Select those voxels within the mask that have a Fractional Anisotropy (FA) of 0.7 or greater;

e The estimate_response command would then be used to generate a response function, which would
internally perform diffusion tensor estimation to get the fibre directions as well as the gradient reorientation.

Rather than this series of commands, dwi2response now provides a similar heuristic in-built as the fa algorithm.
The primary difference is that by default, it will instead select the 300 voxels with the highest FA (though this can be
modified at the command-line).

This algorithm is provided partly for nostalgic purposes, but it also highlights the range of possibilities for single-fbre
voxel selection. One of the problems associated with this approach (over and above the feeling of uncleanliness from
using the tensor model) is that in white matter regions close to CSF, Gibbs ringing can make the signal in =0 images
erroneously low, which causes an artificial increase in FA, and therefore such voxels get included in the single-fibre
mask.

14.2.2 manual

This algorithm is provided for cases where none of the available algorithms give adequate results, for deriving multi-
shell multi-tissue response functions in cases where the voxel mask for each tissue must be defined manually, or for
anyone who may find it useful if trying to devise their own mechanism for response function estimation. It requires
manual definition of both the single-fibre voxel mask (or just a voxel mask for isotropic tissues); the fibre directions
can also be provided manually if necessary (otherwise a tensor fit will be used).

14.2.3 msmt_ 5tt

This algorithm is intended for deriving multi-shell, multi-tissue response functions that are compatible with the new
Multi-Shell Multi-Tissue (MSMT) CSD algorithm. The response function estimation algorithm is identical to that de-
scribed in the manuscript: As long as EPI inhomogeneity field correction has been performed, and a tissue-segmented
anatomical image (prepared in the STT format for ACT) is provided with good prior rigid-body alignment to the
diffusion images, then these high-resolution tissue segmentations can be used to identify single-tissue voxels in the

58 Chapter 14. Response function estimation

http://linkinghub.elsevier.com/retrieve/pii/S1053-8119(14)00644-2

MRtrix Documentation, Release 3.0

diffusion images. This algorithm is hard-wired to provide response functions for the most typical use case for MSMT

CSD:

An isotropic grey matter response, an anisotropic white matter response, and an isotropic CSF response; the

output response functions are provided in the format expected by the dwi2fod command. Those wishing to experi-
ment with different multi-tissue response function configurations will need to use the manual algorithm (which will
provide a multi-shell response function if the input DWI contains such data).

For reference, this algorithm operates as follows:

1.
2.

Resample the STT segmented image to diffusion image space.

For each of the three tissues (WM, GM, CSF), select those voxels that obey the following criteria:
The tissue partial volume fraction must be at least 0.95.

For GM and CSF, the FA must be no larger than 0.2.

For WM, use the mask derived from step 2 as the initialisation to the t ournier algorithm, to select single-fibre
voxels.

Derive a multi-shell response for each tissue for each of these three tissues. For GM and CSF, use Imax=0 for
all shells.

14.2.4 tax

This algorithm is a fairly accurate reimplementation of the approach proposed by Tax et al.. The operation of the
algorithm can be summarized as follows:

1.
2.
3.

4,
5,

Initialise the response function using a relatively ‘fat’ profile, and the single-fibre mask using all brain voxels.
Perform CSD in all single-fibre voxels.

Exclude from the single-fibre voxel mask those voxels where the resulting FOD detects more than one discrete
fibre population, e.g. using the ratio of the amplitudes of the first and second tallest peaks.

Re-calculate the response function using the updated single-fibre voxel mask.

Return to step 2, repeating until some termination criterion is achieved.

The following are the differences between the implementation in dwi2response and this manuscript:

Deriving the initial response function. In the manuscript, this is done using a tensor model with a low FA. I
wasn’t fussed on this approach myself, in part because it’s difficult to get the correct intensity sscaling. Instead,
the script examines the mean and standard deviation of the raw DWI volumes, and derives an initial Imax=4
response function based on these.

The mechanism used to identify the peaks of the FOD. In dwi2response, the FOD segmentation algorithm
described in the SIFT paper (Appendix 2) is used to locate the FOD peaks. The alternative is to use the sh2peaks
command, which uses a Newton search from 60 pre-defined directions to locate these peaks. In my experience,
the latter is slower, and may fail to identify some FOD peaks because the seeding directions are not sufficiently
dense.

For the sake of completeness, the following are further modifications that were made to the algorithm as part of the
earlier dwi2response binary, but have been removed from the script as it is now provided:

Rather than using the ratio of amplitudes between the tallest and second-tallest peaks, this command instead
looked at the ratio of the AFD of the largest FOD lobe, and the sum of the AFD of all other (positive) lobes in
the voxel. Although this in some way makes more sense from a physical perspective (comparing the volume
occupied by the primary fibre bundle to the volume of ‘everything else’), it’s possible that due to the noisy nature
of the FODs at small amplitudes, this may have only introduced variance into the single-fibre voxel identification
process. Therefore the script has reverted to the original & simpler peak amplitude ratio calculation.

14.2.

dwi2response algorithms 59

http://www.sciencedirect.com/science/article/pii/S1053811913008367
http://www.sciencedirect.com/science/article/pii/S1053811912011615

MRtrix Documentation, Release 3.0

* A second, more stringent pass of SF voxel exclusion was performed, which introduced two more criteria that

single-fibre voxels had to satisfy:

Dispersion: A measure of dispersion of an FOD lobe can be derived as the ratio between the integral (fibre
volume) and the peak amplitude. As fibre dispersion increases, the FOD peak amplitude decreases, but the fibre
volume is unaffected; therefore this ratio increases. The goal here was to explicitly exclude voxels from the
single-fibre mask if significant orientation dispersion was observed; this can be taken into account somewhat by
using the FOD peak amplitudes (as orientation dispersion will decrease the amplitude of the tallest peak), but
from my initial experimentation I wanted something more stringent. However as before, given the difficulties
that many users experienced with the dwi2response command, this algorithm in the new script errs on the
side of simplicity, so this test is not performed.

Integral: By testing only the ratio of the tallest to second-tallest FOD peak amplitude, the absolute value of the
peak amplitude is effectively ignored. This may or may not be considered problematic, for either small or large
FOD amplitudes. If the peak amplitude / AFD is smaller than that of other voxels, it’s possible that this voxel
experiences partial volume with CSF: this may satisfy the peak ratio requirement, but using such a voxel is not
ideal in response function estimation as its noise level will be higher and the Rician noise bias will be different.
Conversely, both in certain regions of the brain and in some pathologies, some voxels can appear where the
AFD is much higher due to T2 shine-through; it may seem appealing to use such voxels in response function
estimation as the SNR is higher, but as for the low-signal case, the Rician noise bias will be different to that
in the rest of the brain. The previous dwi2response binary attempted to exclude such voxels by looking at
the mean and standard deviation of AFD within the single-fibre mask, and excluding voxels above or below a
certain threshold. As before, while this heuristic may or may not seem appropriate depending on your point of
view, it has been excluded from the new dwi2response script to keep things as simple as possible.

14.2.5 tournier

Independently and in parallel, Donald also developed a newer method for response function estimation based on CSD
itself; it was used in this manuscript. It bears some resemblance to the t ax algorithm, but relies on a threshold on the
number of voxels in the single-fibre mask, rather than the ratio between tallest and second-tallest peaks. The operation
is as follows:

1.

6.

Define an initial response function that is as sharp as possible (ideally a flat disk, but will be fatter due to
spherical harmonic truncation). Limit this initial function to /max=4, as this makes the FODs less noisy in the
first iteration.

Run CSD for all voxels within the mask (initially, this is the whole brain).

Select the 300 ‘best’ single-fibre voxels. This is not precisely the ratio between tallest and second-tallest peaks;
instead, the following equation is used, which also biases toward selection of voxels where the tallest FOD
peak is larger: sqgrt (|peakl|) = (1 - |peak2| / |peakl]|)"~2. Use these voxels to generate a
new response fuction.

Test to see if the selection of single-fibre voxels has changed; if not, the script is completed.

Derive a mask of voxels to test in the next iteration. This is the top 3,000 voxels according to the equation above,
and dilated by one voxel.

Go back to step 2.

This approach appears to be giving reasonable results for the datasets on which it has been tested. However if you are
involved in the processing of non-human brain images in particular, you may need to experiment with the number of
single-fibre voxels as the white matter is typically smaller.

60

Chapter 14. Response function estimation

http://dx.doi.org/10.1002/nbm.3017

MRtrix Documentation, Release 3.0

14.3 TL;DR

If this document appears far too long for your liking, or you’re not particularly interested in the details and just
want to know what option to use so that you can continue with your processing, the following are our ‘cautious’
recommendations. However we emphasize that this script may not work flawlessly for all data; if it did, we wouldn’t
be providing a script with so many options! Furthermore, these recommendations may change over time, so check in
every now and then, and make sure to sign up to the new community forum.

« If you’re processing single-shell data, the t ournier algorithm appears to be fairly robust.

e If you’re processing multi-shell data, and are able to perform EPI inhomogeneity distortion correction,
msmt_5tt is currently the only fully-automated method for getting multi-shell multi-tissue response func-
tions.

14.3. TL;DR 61

community.mrtrix.org

MRtrix Documentation, Release 3.0

62

Chapter 14. Response function estimation

cHAPTER 15

Maximum spherical harmonic degree /max

15.1 What determines /,ox for my image data?

For any command or script operating on data in the spherical harmonic basis, it should be possible to manually set
the maximum harmonic degree of the output using the —1max command-line option. If this is not provided, then an
appropriate value will be determined automatically.

The mechanisms by which this automatic determination of /;,,x occurs are as follows:

¢ Determine the maximum value for [, that is supported by the number of DWI volumes in the shell being pro-
cessed (or the total number of non-b=0 volumes in a single-shell acquisition). This is the number of coefficients
required to store an anitipodally-symmetric spherical harmonic function:

Imax | Required volumes
2 6

4 15

6 28

8 45

10 66

12 91

o If /hax €xceeds 8, reduce to 8. This is primarily based on the findings in this paper.

* Check the condition of the transformation between DWIs and spherical harmonics. If the transformation is ill-
conditioned (usually indicating that the diffusion sensitisation gradient directions are not evenly distributed over
the sphere or half-sphere), reduce /;,,x until the transformation is well-conditioned.

As an example: concatenating two repeats of a 30 direction acquisition to produce 60 volumes will not support
an [, =8 fit: the angular resolution of the data set is equivalent to 30 unique directions, and so /,,x=6 would be
selected (and this would be accompanied by a command-line warning to the user).

* In the case of spherical deconvolution, the /,,x selected for FOD estimation will also be reduced if I, ,x of the
provided response function is less than that calculated as above.

63

http://onlinelibrary.wiley.com/doi/10.1002/nbm.3017/abstract

MRtrix Documentation, Release 3.0

The exception to these rules is the new amp2response command, which is now called by default in all
dwi2response script algorithms. This command converts amplitudes on the half-sphere (most likely in the form
of raw DWI image intensities) into a response function intended for use in spherical deconvolution. This command
behaves differently for two reasons in combination:

* The image data from multiple voxels are combined together in a single fitting procedure, therefore having a
much greater number of samples when performing the transformation.

» The data are transformed not to the spherical harmonic basis, but directly to the zonal spherical harmonic basis
(this is the spherical harmonic basis containing only them = 0 terms). This basis requires far fewer coefficients
for any given value of [,x: 2 for l.x=2, 3 for l.x=4, 4 for [;,,x=6, 5 for /,,,x=8 and so on.

The value of [, that can be used in this command is therefore practically unconstrained; though the power in higher
harmonic degrees is much smaller than that in lower degrees. The command is currently configured to select /;,,x=10
by default, regardless of b-value; interested readers can find the discussion here.

15.2 Reduced /ax in particular subjects

If you find that certain subjects within a cohort have a reduced /,,,x compared to the rest of the cohort when using any
command relating to spherical harmonics, the most likely cause is premature termination of the diffusion sequence
during scanning of those subjects, resulting in a reduced number of diffusion volumes, and therefore a reduced /yax
according to the table above.

15.3 Setting /max in different applications

The range of permissible values for /,,,x depends on the particular command being used; e.g.:

* For any command that maps image data directly to spherical harmonics, it is impossible to set /i« to a value
higher than that supported by the image data. The transformation from DWI data to spherical harmonics simply
cannot be done in such a case, as the problem is under-determined. You can of course set /;,,x to a lower value
than that supported by the data.

¢ In spherical deconvolution, it is possible to set a higher /;,,x than that supported by the data - so-called super-
resolved spherical deconvolution. Here, additional information is provided by the non-negativity constraint to
make estimation of additional spherical harmonic coefficients possible. However this is not guaranteed: some-
times the algorithm will fail in particular voxels, in cases where there are an insufficient number of directions in
which the initial FOD estimate is negative, as the problem remains under-determined.

¢ If performing Track Orientation Density Imaging (TODI) using t ckmap —tod, then the apodized point spread
functions (aPSFs) can be generated at any value of /.,,x for which aPSF data are available (currently /,,x=16,
since the angular resolution of the original image data is not a limiting factor here.

* As described previously, the amp2response command is a special case, and the maximum permissible /j,ax
is vastly greater than the maximum practical value.

64 Chapter 15. Maximum spherical harmonic degree /nax

https://github.com/MRtrix3/mrtrix3/pull/786

cHAPTER 16

Multi-tissue constrained spherical deconvolution

16.1 Introduction

Multi-tissue constrained spherical deconvolution (CSD) of multi-shell data exploits the unique b-value dependencies
of the different macroscopic tissue types (WM/GM/CSF) to estimate a multi-tissue orientation distribution function
(ODF) as explained in Jeurissen et al. (2014). As it includes separate compartments for each tissue type, it can produce
a map of the WM/GMY/CSF signal contributions directly from the DW data. In addition, the more complete modelling
of the DW signal results in more accurate apparent fiber density (AFD) measures and more precise fibre orientation
estimates at the tissue interfaces.

16.2 User guide

Multi-tissue CSD can be performed as:

’dwiZfod msmt_csd dwi.mif wm.txt wm.mif gm.txt gm.mif csf.txt csf.mif

where
e dwi.mif is the dwi data set (input)
* <tissue>.txt is the tissue-specific response function (input)
e <tissue>.mif is the tissue-specific ODF (output)
Note that input response functions and their corresponding output ODFs need to be specified in pairs.

Typically, you will also want to use the —mask to avoid calculations in non-brain voxels:

’dwiZfod msmt_csd -mask mask.mif dwi.mif wm.txt wm.mif gm.txt gm.mif csf.txt csf.mif

RGB tissue signal contribution maps can be obtained as follows:

’mrconvert —coord 3 0 wm.mif - | mrcat csf.mif gm.mif - vEf.mif

65

MRtrix Documentation, Release 3.0

The resulting WM fODFs can be displayed together with the tissue signal contribution map as:

mrview vf.mif -odf.load_sh wm.mif

16.2.1 Per tissue response function estimation

Input response functions for CSF, GM and single fibre WM can be estimated from the data using prior tissue segmen-
tations, similarly to that described in Jeurissen et al. (2014) using the dwi2response msmt_5tt command:

dwi2response msmt_5tt dwi.mif 5tt.mif wm.txt gm.txt csf.txt

where
e dwi.mif is the same dwi data set as used above (input)
* 5tt.mif is atissue type segmentation of a coregistered T1 data set from the same subject (input)
* <tissue>.txt is the tissue-specific response function as used above (output)

Prior tissue type segmentation can be obtained from a structural T1 scan using the 5ttgen script:

Sttgen fsl Tl.mif 5tt.mif

where
e T1.mif is a coregistered T1 data set from the same subject (input)
* 5tt.mif is the tissue type segmentation used above (output)

The difference between the default behaviour of dwi2response msmt_5tt and the method described in Jeuris-
sen et al. (2014) is that instead of selecting WM single-fibre voxels using an FA threshold, the dwi2response
tournier algorithm is instead used.

Note that this process is dependent on accurate correction of EPI geometric distortions, and rigid-body registration
between the DWI and T1 modalities, such that the T1 image can be reliably used to select pure-tissue voxels in the
DWI volumes. Failure to achieve these may result in inappropriate voxels being used for response function estimation,
with concomitant errors in tissue estimates.

16.3 References

1. B. Jeurissen, J.D. Tournier, T. Dhollander, A. Connelly, and J. Sijbers. Multi-tissue constrained spherical de-
convolution for improved analysis of multi-shell diffusion MRI data. Neurolmage, 103 (2014), pp. 411-426 [SD
link]

66 Chapter 16. Multi-tissue constrained spherical deconvolution

http://www.sciencedirect.com/science/article/pii/S1053811914006442
http://www.sciencedirect.com/science/article/pii/S1053811914006442

cHAPTER 17

Anatomically-Constrained Tractography (ACT)

This page describes the recommended processing steps for taking advantage of the Anatomically-Constrained Trac-
tography (ACT) framework, the image format used, and the commands available for manipulating these data. There
are also instructions for anyone looking to make use of alternative tissue segmentation approaches.

17.1 References

For full details on ACT, please refer to the following journal article:

Smith, R. E., Tournier, J.-D., Calamante, F., & Connelly, A. (2012). Anatomically-constrained tractogra-
phy: Improved diffusion MRI streamlines tractography through effective use of anatomical information.
Neurolmage, 62(3), 1924-1938. doi:10.1016/j.neuroimage.2012.06.005

If you use ACT in your research, please cite the article above in your manuscripts.

17.2 Pre-processing steps

17.2.1 DWI distortion correction

For the anatomical information to be incorporated accurately during the tractography reconstruction process, any
geometric distortions present in the diffusion images must be corrected. The FSL 5.0 commands topup and eddy
are effective in performing this correction based on a reversed phase-encode acquisition, though their interfaces can
be daunting. We therefore provide a wrapper script, dwipreproc, which interfaces with these tools to perform
correction of multiple forms of image distortion (motion, eddy current and inhomogeneity). Please read the DWI
distortion correction using dwipreproc page, and the dwipreproc help page for further details.

17.2.2 Image registration

My personal preference is to register the T1-contrast anatomical image to the diffusion image series before any further
processing of the T1 image is performed. By registering the T1 image to the diffusion series rather than the other way

67

http://www.ncbi.nlm.nih.gov/pubmed/22705374/
http://www.ncbi.nlm.nih.gov/pubmed/22705374/
http://www.ncbi.nlm.nih.gov/pubmed/22705374/

MRtrix Documentation, Release 3.0

around, reorientation of the diffusion gradient table is not necessary; and by doing this registration before subsequent
T1 processing, any subsequent images derived from the T1 are inherently aligned with the diffusion image series. This
registration should be rigid-body only; if the DWI distortion correction is effective, a higher-order registration is likely
to only introduce errors.

17.2.3 DWI pre-processing

Because the anatomical image is used to limit the spatial extent of streamlines propagation rather than a binary mask
derived from the diffusion image series, I highly recommend dilating the DWI brain mask prior to computing FODs;
this is to make sure that any errors in derivation of the DWI mask do not leave gaps in the FOD data within the brain
white matter, and therefore result in erroneous streamlines termination.

17.2.4 Tissue segmentation

So far I have had success with using FSL tools to also perform the anatomical image segmentation; FAST is not
perfect, but in most cases it’s good enough, and most alternative software I tried provided binary mask images only,
which is not ideal. The 5ttgen script using the £s1 algorithm interfaces with FSL to generate the necessary image
data from the raw T1 image, using BET, FAST and FIRST. Note that this script also crops the resulting image so
that it contains no more than the extracted brain (as this reduces the file size and therefore improves memory access
performance during tractography); if you want the output image to possess precisely the same dimensions as the input
T1 image, you can use the -nocrop option.

17.3 Using ACT

Once the necessary pre-processing steps are completed, using ACT is simple: just provide the tissue-segmented image
to the t ckgen command using the —act option.

In addition, since the propagation and termination of streamlines is primarily handled by the 5TT image, it is no longer
necessary to provide a mask using the —-mask option. In fact, for whole-brain tractography, it is recommend that you
not provide such an image when using ACT: depending on the accuracy of the DWI brain mask, its inclusion
may only cause erroneous termination of streamlines inside the white matter due to exiting this mask. If the mask
encompasses all of the white matter, then its inclusion does not provide any additional information to the tracking
algorithm.

17.4 The 5TT format

When the ACT framework is invoked, it expects the tissue information to be provided in a particular format; this is
referred to as the ‘five-tissue-type (5TT)” format. This is a 4D, 32-bit floating-point image, where the dimension of
the fourth axis is 5; that is, there are five 3D volumes in the image. These five volumes correspond to the different
tissue types. In all brain voxels, the sum of these five volumes should be 1.0, and outside the brain it should be zero.
The tissue type volumes must appear in the following order for the anatomical priors to be applied correctly during
tractography:

0. Cortical grey matter

1. Sub-cortical grey matter
2. White matter
3. CSF
4

. Pathological tissue

68 Chapter 17. Anatomically-Constrained Tractography (ACT)

MRtrix Documentation, Release 3.0

The first four of these are described in the ACT Neurolmage paper. The fifth can be optionally used to manually
delineate regions of the brain where the architecture of the tissue present is unclear, and therefore the type of anatomical
priors to be applied are also unknown. For any streamline entering such a region, no anatomical priors are applied
until the streamline either exists that region, or stops due to some other streamlines termination criterion.

The following binaries are provided for working with the STT format:

* 5tt2gmwmi: Produces a mask image suitable for seeding streamlines from the grey matter - white mat-
ter interface (GMWMI). The resulting image should then be provided to the tckgen command using the
—-seed_gmwmi option.

* 5tt2vis: Produces a 3D greyscale image suitable for visualisation purposes.

* 5ttedit: Allows the user to edit the tissue segmentations. Useful for manually correcting tissue segmentations
that are known to be erroneous (e.g. dark blobs in the white matter being labelled as grey matter); see the
command’s help page for more details.

17.5 Alternative tissue segmentation software

Users who wish to experiment with using tissue segmentations from different software sources are encouraged to do
s0; if a particular approach is shown to be effective we can add an appropriate script to MRtrix. The 5ttgen script
has a second algorithm, freesur fer, which demonstrates how the output of different software can be manipulated
to provide the tissue segmentations in the appropriate format. It is however not recommended to actually use this
alternative algorithm for patient studies; many midbrain structures are not segmented by FreeSurfer, so the tracking
may not behave as desired.

Users who wish to try manipulating the tissue segmentations from some alternative software into the 5TT format may
find it most convenient to make a copy of one of the existing algorithms within the 1ib/mrtrix3/_5ttgen/
directory, and modify accordingly. The 5ttgen script will automatically detect the presence of the new algorithm,
and make it available at the command-line.

17.5. Alternative tissue segmentation software 69

MRtrix Documentation, Release 3.0

70

Chapter 17. Anatomically-Constrained Tractography (ACT)

cHAPTER 18

Spherical-deconvolution Informed Filtering of Tractograms (SIFT)

SIFT, or ‘Spherical-deconvolution Informed Filtering of Tractograms’, is a novel approach for improving the quantita-
tive nature of whole-brain streamlines reconstructions. By producing a reconstruction where the streamlines densities
are proportional to the fibre densities as estimated by spherical deconvolution throughout the white matter, the number
of streamlines connecting two regions becomes a proportional estimate of the cross-sectional area of the fibres con-
necting those two regions. We therefore hope that this method will attract usage in a range of streamlines tractography
applications.

The actual usage of SIFT can be found in the help page of the tcksift command. In this page I'll outline some
issues that are worth thinking about if you are looking to apply this method.

18.1 References

For full details on SIFT, please refer to the following journal article:

Smith, R. E., Tournier, J.-D., Calamante, F., & Connelly, A. (2013). SIFT: Spherical-deconvolution
informed filtering of tractograms. Neurolmage, 67, 298-312. doi:10.1016/j.neuroimage.2012.11.049

If you use SIFT in your research, please cite the article above in your manuscripts.

18.2 DWI bias field correction

DWI volumes often have a non-negligible B/ bias field, mostly due to high-density receiver coils. If left uncorrected,
SIFT will incorrectly interpret this as a spatially-varying fibre density. Therefore bias field correction is highly recom-
mended. We generally estimate the bias field based on the mean b=0 image, and apply the estimated field to all DWI
volumes. This can currently be achieved using the dwibiascorrect script, which can employ either the FAST tool
in FSL or the N4 algorithm in ANTS to perform the field estimate.

71

http://www.ncbi.nlm.nih.gov/pubmed/23238430
http://www.ncbi.nlm.nih.gov/pubmed/23238430

MRtrix Documentation, Release 3.0

18.3 Number of streamlines pre / post SIFT

In diffusion MRI streamlines tractography, we generate discrete samples from a continuous fibre orientation field.
The more streamlines we generate, the better our reconstruction of that field. Furthermore, the greater number of
streamlines we generate, the less influence the discrete quantification of connectivity has on the connectome (e.g.
would rather be comparing 1,000 v.s. 2,000 streamlines to 1 v.s. 2; it’s less likely to be an artefact of random / discrete
sampling). So the more streamlines the better, at the cost of execution speed & hard drive consumption.

However we also have the added confound of SIFT. The larger the number of streamlines that can be fed to SIFT
the better, as it can make better choices regarding which streamlines to keep/remove; but it also introduces a memory
constraint. SIFT can deal with approximately 4-8 million streamlines per GB of RAM (depending on the seeding
mechanism used and the spatial resolution of your diffusion images), so ideally you’ll want access to dedicated high-
performance computing hardware. On top of this, there’s the issue of how many streamlines to have remaining in the
reconstruction after SIFT; the more streamlines that SIFT removes, the better the streamlines reconstruction will fit
the image data, but the more likely you are to run into quantisation issues with the resulting tractogram.

So when you design your image processing pipeline, you need to consider the compromise between these factors:

* Initially generating a larger number of streamlines is beneficial for both the quality and the density of the filtered
reconstruction, at the expense of longer computation time (both in generating the streamlines, and running
SIFT), and a higher RAM requirement for running SIFT.

* Filtering a greater number of streamlines will always produce a superior fit to the image data, at the expense of
having a lower-density reconstruction to work with afterwards, and a slightly longer computation time.

Unfortunately there’s no single answer of how many streamlines are required, as it will depend on the diffusion model,
tractography algorithm, and spatial extent of your target regions / connectome parcellation granularity. There are a
couple of papers / abstracts on the topic if you look hard enough, but nothing definitive, and nothing involving SIFT. I
would recommend testing using your own data to find numbers that are both adequate in terms of test-retest variability,
and computationally reasonable.

Personally I have been using a FreeSurfer parcellation (84 nodes), generating 100 million streamlines and filtering
to 10 million using SIFT (I'm a physicist; I like orders of magnitude). In retrospect, I would say that when using
white matter seeding, filtering by a factor of 10 is inadequate (i.e. the fit of the reconstruction to the data is not
good enough); and with grey matter - white matter interface seeding, a final number of 10 million is inadequate (the
streamlines are mostly very short, so the appearance of the reconstruction is quite sparse). Another alternative is
‘dynamic seeding’, which uses the SIFT model during tractogram generation to only seed streamlines in pathways
that are poorly reconstructed (see the —~seed_dynamic option in tckgen); this provides a better initial estimate,
so the percentage of streamlines that need to be removed in order to achieve a good fit is reduced. I will leave it to the
end user to choose numbers that they deem appropriate (unless we do a paper on the topic, in which case you will use
our published values without question).

18.4 Normalising connection density between subjects

An ongoing issue with our Apparent Fibre Density (AFD) work is how to guarantee that a smaller FOD in a subject
actually corresponds to a reduced density of fibres. Structural connectome studies have a similar issue with regards to
streamline counts; Even if SIFT is applied, this only guarantees correct proportionality between different connection
pathways within a subject, not necessarily between subjects. The simplest and most common solution is simply to use
an identical number of streamlines for every subject in connectome construction; however this isn’t perfect:

» The distribution of streamlines lengths may vary between subjects, such that the reconstructed streamlines ‘den-
sity’ differs.

¢ A subject may have decreased fibre density throughout the brain, but be morphologically normal; if the same
number of streamlines are generated, this difference won’t be reflected in the tractogram post-SIFT.

72 Chapter 18. Spherical-deconvolution Informed Filtering of Tractograms (SIFT)

MRtrix Documentation, Release 3.0

« If the white matter volume varies between subjects, but the actual number of fibres within a given volume is
consistent, then the subject with a larger brain may have an elevated total number of fibre connections; this
would also be missed if the number of streamlines were fixed between subjects.

It’s also possible to scale by the total white matter volume of each subject; this would however fail to take into account
any differences in the density of fibres within a fixed volume between subjects.

An alternative approach is to try to achieve normalisation of FOD amplitudes across subjects, as is done using AFD.
This requires a couple of extra processing steps, namely inter-subject intensity normalisation and use of a group
average response function, which are also far from error-free. But if this can be achieved, it means that a fixed density
of streamlines should be used to reconstruct a given FOD amplitude between subjects, and then the cross-sectional
area of fibres represented by each streamline is also identical between subjects; this can be achieved by terminating
SIFT at a given value of the proportionality coefficient using the —~term_mu option. One potential disadvantage of
this approach (in addition to the issues associated with intensity normalisation) is that using a group average response
function instead of the individual subject response may result in spurious peaks or incorrect relative volume fractions
in the FODs, which could influence the tracking results.

Ideally, a diffusion model would provide the absolute partial volume of each fibre population, rather than a proportional
quantity: this could then be used directly in SIFT. However the diffusion models that do provide such information tend
to get the crossing fibre geometry wrong in the first place. ..

If anyone has any ideas on how to solve this pickle, let us know.

18.5 No DWI distortion correction available

SIFT should ideally be used in conjunction with ACT; by passing the ACT 5TT image to tcksift using the —~act
option, the command will automatically derive a processing mask that will limit the contribution of non-pure-white-
matter voxels toward the model. Without this information, non-pure-white-matter voxels adversely affect both stream-
lines tractography, and the construction of the SIFT model.

If you are looking to apply SIFT without correction of DWI geometric distortions (and therefore without reliable
high-resolution co-registered anatomical image data), these are some points that you may wish to consider:

* The spatial extent of the DWI mask may have a large influence on your streamlines tractography results. There-
fore greater care should perhaps be taken to validate this mask, including manual editing if necessary.

* It is possible to manually provide a processing mask to t cksift using the ~-proc_mask option. If users are
capable of heuristically generating an approximate white matter partial volume image from the DWI data alone,
this may be appropriate information to provide to the SIFT model.

18.6 Use of SIFT for quantifying pathways of interest

In some circumstances, researchers may be interested in the connection density of one or two specific pathways of
interest, rather than that of the whole brain. SIFT is still applicable in this scenario; however the SIFT algorithm itself
is only applicable to whole-brain fibre-tracking data. Therefore, the workflow in this scenario should be: * Generate
a whole-brain tractogram; * Apply SIFT; * Extract the pathway(s) of interest using tckedit. * Get the streamline
count using tckinfo.

The SIFT algorithm is not directly applicable to targeted tracking data. The underlying biophysical model in SIFT
assumes that the estimated density of each fibre population in every voxel of the image should be proportionally recon-
structed by streamlines; if only a subset of pathways in the brain are permitted to be reconstructed by the tractography
algorithm, this will clearly not be the case, so appplication of SIFT in this instance will provide erroneous results.

18.5. No DWI distortion correction available 73

MRtrix Documentation, Release 3.0

74

Chapter 18. Spherical-deconvolution Informed Filtering of Tractograms (SIFT)

cHAPTER 19

Structural connectome construction

Included in this new version of MRtrix are some useful tools for generating structural connectomes based on stream-
lines tractography. Here I will describe the steps taken to produce a connectome, and some issues that should be taken
into consideration. Note that I will not be going into appropriate parcellations or network measures or anything like
that; once you’ve generated your connectomes, you’re on your own.

19.1 Preparing a parcellation image for connectome generation

Parcellations are typically provided as an integer image, where each integer corresponds to a particular node, and
voxels where there is no parcellation node have a value of 0. However, for all of the parcellation schemes I’ve looked
at thus far, the values used for the nodes do not increase monotonically from 1, but rather have some non-linear
distribution; a text file (or ‘lookup table’) is then provided that links node indices to structure names. This is however
undesirable for connectome construction; it would be preferable for the node indices to increase monotonically from
1, so that each integer value corresponds to a row/column position in the connectome matrix.

This functionality is provided in the command labelconvert. It takes as its input a parcellation image that has
been provided by some other software package, and converts the label indices; this is done so that the code that actually
generates the connectome can be ‘dumb and blind’, i.e. the integer values at the streamline endpoints correspond to the
row & column of the connectome matrix that should be incremented. In addition, this processing chain design provides
flexibility in terms of both the source of the parcellation data, and the way in which the user wishes to customise the
layout of their connectome.

Please consult the tutorial labelconvert: Explanation & demonstration for a guide on how to use the 1abelconvert
command.

19.2 Generating the connectome

The command tck2connectome is responsible for converting the tractogram into a connectome matrix, based
on the provided parcellation image. By default, the streamline count is used as the connectivity metric; run
tck2connectome -help to see alternative heuristics / measures.

75

MRtrix Documentation, Release 3.0

A factor in structural connectome production commonly overlooked or not reported in the literature is the mechanism
used to assign streamlines to grey matter parcels. If done incorrectly this can have a large influence on the resulting
connectomes. This is one aspect where Anatomically-Constrained Tractography (ACT) really shines; because stream-
lines can only terminate precisely at the grey matter - white matter interface, within sub-cortical grey matter, or at
the inferior edge of the image, this assignment becomes relatively trivial. The default assignment mechanism is a
radial search outwards from the streamline termination point, out to a maximum radius of 2mm; and the streamline
endpoint is only assigned to the first non-zero node index. If you do not have the image data necessary to use the ACT
framework, see the ‘No DWI distortion correction available’ section below.

19.3 SIFT and the structural connectome

If you are generating structural connectomes, you should be using Spherical-deconvolution Informed Filtering of
Tractograms (SIFT).

19.4 Extracting pathways of interest from a connectome

The command connectome2tck can be used to extract specific connections of interest from a connectome for
further interrogation or visualisation. Note that since the resulting connectome matrix does not encode precisely
which parcellation node pair each streamline was assigned to, the streamlines are re-assigned to parcellation nodes
as part of this command. Run connectome2tck -help to see the various ways in which streamlines may be
selected from the connectome.

Also: Beware of running this command on systems with distributed network file storage. This particular command
uses an un-buffered file output when writing the streamlines files, which re-opens the output file and writes data for
individual streamlines at a time (necessary as many files may be generated at once); such systems tend to be optimised
for large-throughput writes, so this command may cause performance issues.

19.5 No DWI distortion correction available

If you can’t perform DWI susceptibility distortion correction, it severely limits how accurately you can estimate the
structural connectome. If this is the case for you, below is a few points that are worth considering.

19.5.1 Non-linear registration

Rather than actually correcting the DWI geometric distortions, some people try to do a non-linear registration between
DWI and T1 images. In general I’'m against this: the registration is fairly ill-posed due to the differing contrasts, and
an off-the-shelf non-linear registration will have too many degrees of freedom. Pursue at your own risk.

19.5.2 Grey matter parcellation

With good spatial alignment, parcellations that highlight only the cortial ribbon (e.g. FreeSurfer) are highly accurate
and effective, and the assignment of streamlines to those parcellations will also be robust if ACT is used. But without
these, residual registration errors may have a large influence, and assigning streamlines to parcellations only as thick
as the cortex may also be erroneous (streamlines may terminate prior to the parcel, or travel through and extend well
beyond it). A parcellation with large-volume nodes that is based on atlas registration (e.g. AAL) is likely more
appropriate in this case.

76 Chapter 19. Structural connectome construction

MRtrix Documentation, Release 3.0

19.5.3 Assighment of streamlines to parcellation nodes

Without ACT, streamlines will terminate pretty much anywhere within the DWI brain mask. Not only this, but they
may traverse multiple parcellation nodes, turn around within a node and traverse elsewhere, terminate just prior to
entering a node, all sorts of weirdness. I have provided a few assignment mechanisms that you can experiment with -
run tck2connectome -help to see the list and parameters for each. Alternatively if anyone has a better idea for
how this could potentially be done, I'd love to hear it.

19.5. No DWI distortion correction available 77

MRtrix Documentation, Release 3.0

78

Chapter 19. Structural connectome construction

cHAPTER 20

Using the connectome visualisation tool

The connectome tool bar in MRtrix3 has been designed from scratch, with the intention of providing a simple, data-
driven mechanism for visually assessing individual connectomes as well as the results of network-based group statis-
tics. The interface may therefore vary considerably from other connectome visualisation packages, and may be intim-
idating for new users who simply want to ‘see the connectome’. I hope I can convince you in this tutorial that the
design of this tool allows you, the user, to dictate exactly how you want to visualise the connectome, rather than being
forced to conform to a particular prior expectation of how such things should be visualised.

20.1 Initialising the tool

My suspicion is that new users will load the tool, and immediately think: ‘Where do I load my connectome?’. Well,
let’s take a step backwards. If you were to give the software a connectome matrix, with no other data, there would be
no way to visualise that connectome in the space of an MR image: the software has no information about the spatial
locations of the nodes upon which that connectome is based. So the first step is actually to load an image to provide
the tool with this information, using the “Node image” button at the top of the toolbar. The desired image is the output
of the labelconvert command, as detailed in the Structural connectome construction guide: the tool uses this
image to localise each parcel in 3D space in preparation for visualisation. Alternatively, you can load the relevant
parcellation image from the command-line when you first run mrview, using the —connectome.init option.

Attention: If you still do not see anything in the mrview main window, this is likely because you have not
yet opened a primary image in mrview. This is currently necessary for mrview to correctly set up the camera
positioning. The easiest solution is to open your parcellation image not only to initialise the connectome tool, but
also as a standard image in mrview; then simply hide the main image using the ‘View’ menu.

With the basis parcellation image loaded, the tool will display the location of each node; note however that all of the
nodes are exactly the same colour, and exactly the same size, and there are no connections shown between them - it’s
an entirely dis-connected network. This makes sense - we haven’t actually provided the tool with any information
regarding which connections are present and which are absent. We can also do the opposite: change the “Edge
visualisation” - “Visibility” from ‘None’ to ‘All’, and now the software shows every edge in the connectome non-
discriminantly.

79

MRtrix Documentation, Release 3.0

Therefore, we need some mechanism of informing the software of which edges should be drawn, and which should not.
Most logically, this could be achieved by loading a structural connectome, and perhaps applying some threshold. So
now, for the “Edge visualisation” - “Visibility” option, select “Matrix file”, and load your connectome. The software
now uses the data from this external file to threshold which edges are drawn and which are not, and also allows
you to vary that threshold interactively. (You can also load a connectome matrix from the command line using the
—connectome . load option.)

The connectome still however has a binary appearance; every edge in the connectome is either present or absent, and
they all have the same size and the same colour. We know that our connectome contains weights distributed over a
wide scale, and would like to be able to see this as part of our visualisation; for instance, we may decide that more
dense connections should have a ‘hot’ colour appearance, whereas less dense connections should be darker. We can
achieve this by changing the “Edge visualisation” - “Colour” from ‘Fixed’ to ‘Matrix file’, and selecting an appropriate
matrix file (perhaps the same file as was used for the visibility threshold, perhaps not).

For most users, connectome data will be loaded using the ‘open’ button in the ‘connectome matrices’ section, or at the
command-line when mrview is first run using the —connectome. load option.

20.2 Basis of connectome visualisation customisation

With the above steps completed, you should obtain a fairly rduimentary visualisation of the connectome you have
loaded. The plethora of buttons and gadgets in the connectome tool user interface is however a clue regarding the
scope of customisation available for precisely how the connectome data will be displayed.

As an example, consider the ‘Edge visualisation - Colour’ entry. These options control how the colour of each indi-
vidual edge in the connectome will be determined, based on the data the tool is provided with. Clicking on the main
combo box shows that there are a few options available:

* Fixed: Use the same fixed colour to display all visible edges.

* By direction: The XYZ spatial offset between the two nodes connected by an edge is used to derive an RGB
colour (much like the default streamlines colouring).

* Connectome: The colour of each edge will depend on the value for that edge in the connectome you have loaded,
based on some form of value -> colour mapping (a ‘colour map’).

* Matrix file: Operates similarly to the connectome option; except that the value for each edge is drawn from a
matrix file that is not the connectome matrix you have loaded (though it must be based on the same parcellation
to have any meaning). So for instance: You could load a structural connectome file as your connectome matrix
and show only those edges where the connection density is above a certain threshold, but then set the colour of
each edge based on a different matrix file that contains functional connectivity values.

If the Connectome or Matrix file options are used, it is also possible to alter the colour map used, and modify the values
at which the edges will reach the colours at either extreme of the colour map.

Hopefully, this simple demonstration will be enough to highlight the design principle of this tool, and therefore the
frame of mind necessary to use it effectively:

What *data* do I want to determine a specific *visual property* of my connectome?

There is tremendous power in separating these two entities. For instance, consider a use case where I have performed
network-based group statistics, and wish to visualise my result. I may choose to threshold the connectome edges based
on statistical significance, but set the width of the connections based on the mean connection strength to get an idea
of the density of connections in the detected network, but set the colour of each edge based on the effect size to see
which components of the network are most affected. I can even automatically hide any nodes that are not involved in
the detected network by selecting “Node visualisation” - “Visibility” - ‘Degree >=1".

80 Chapter 20. Using the connectome visualisation tool

MRtrix Documentation, Release 3.0

20.3 Importing detailed node information

When the parcellation image is first loaded, the software has no information regarding the designations of the un-
derlying nodes, so it simply labels them as “Node 17, “Node 2” etc.. To show the anatomical name of each node in
the list, you must load the connectome lookup table that was used as the target output in the labelconvert step
during [structural connectome construction]. This file provides a list of node indices and their corresponding names,
so is perfect for subsequent assessment of the resulting connectomes, whether using this tool or in other contexts (e.g.
Matlab). Such a lookup table may also include a pre-defined colour for each node, which can then be used during
visualisation by selecting “Node Visualisation -> Colour -> LUT”.

20.4 Advanced visualisation

There are a couple of neat tricks that can be used to produce impressive-looking visualisations, but need some pre-
processing or careful consideration in order to achieve them.

20.4.1 Visualising edges as streamlines / streamtubes

Rather than drawing a straight line between connected nodes to represent an edge, it is possible with tractography-
based connectome construction to instead represent each connection based on the structural trajectory by which those
nodes are inter-connected. This can be achieved as follows:

e When generating the connectome using fck2connectome, use the —out_assignments option. This will
produce a text file where each line contains the indices of the two nodes to which that particular streamline was
assigned.

» Use the connectome2tck command to produce a single track file, where every streamline represents the mean,
or exemplar, trajectory between two nodes. This is achieved using two command-line options: —exemplars
to instruct the command to generate the exemplar trajectory for each edge, rather than keeping all streamlines
(you will need to provide your parcellation image); and -files single to instruct the command to place all
computed exemplars into a single output file.

 In the mrview connectome toolbar, select “Edge visualisation” - “Geometry” - ‘Streamlines / Streamtubes’,
and select the exemplar track file just generated.

20.4.2 Visualising nodes as triangulated meshes

Although the node parcellations are represented as volumetric segmentations, and we do not yet have support for
importing mesh-based parcellations, it is still possible to visualise the conectome nodes using a mesh-based repre-
sentation. This is done by explicitly converting the volume of each parcel to a triangulated mesh. The process is as
follows:

e Compute a triangular mesh for each node, and store the results in a single file. The command is called /a-
bel2mesh. Note that the output file must be in the . obj file format: this is the only format currently supported
that is capable of storing multiple mesh objects in a single file.

* (Optional) Smooth the meshes to make them more aesthetically pleasing (the results of the conversion process
used in label2mesh appear very ‘blocky’). Apply the meshfilter command, using the smooth operator.
Again, the output must be in the . obJj format.

* In the mrview connectome toolbar, select “Node visualisation” - “Geometry” - ‘Mesh’, and select the mesh
file just generated.

20.3. Importing detailed node information 81

MRtrix Documentation, Release 3.0

20.4.3 Using node selection to highlight features of interest

The table in the connectome toolbar that lists the node names and colours can also be used to select and highlight
particular nodes. In most cases, this will simply be an additional ‘toy’ for navigating the data; however it’s also
possible that this capability will prove to be a powerful tool for demonstrating network features.

In any connectome visualisation software, when the user selects one or more particular nodes of interest, some modi-
fication must be applied to the visual features of the nodes in order to ‘highlight’ the nodes of interest. In many cases,
this may be hard-wired to behave in a particular way. In the case of mrview in MRtrix3, this highlighting mechanism
is entirely flexible: the user can control the visual modifications applied to both those network elements selected and
those not selected. For instance, you may choose for nodes to become completely opaque when you select them, while
other un-selected nodes remain transparent; or they may grow in size with respect to the rest of the connectome; or
they may change in colour to highlight them; or those nodes not selected may disappear entirely. This flexibility is
accessed via the “Selection visualisation settings” button, which will open a dialog window providing access to these
settings.

As manual selection applies to nodes only, the behaviour for edges is as follows:
* When no nodes are selected, all edges are drawn according to their standard settings.

« If a single node is selected, all edges emanating from that node are considered to be ‘selected’, and the relevant
visual modifiers will be applied.

* If two or more nodes are selected, only connections exclusively connecting between the nodes of interest are
considered to be ‘selected’.

20.4.4 Node visualisation using matrices

When using external data files to control the visual properties of the connectome, most commonly vector files will
be used to determine visual properties of nodes, and matrix files will be used to determine visual properties of edges.
These provide precisely one scalar value per connectome element, and therefore provide a static visual configuration.

It is however also possible to set any visual property of the connectome nodes based on a matrix file. In this scenario,
the values to be drawn from the matrix - and hence their influence on the relevant visual property of the nodes - depends
on the current node selection. That is: once you select a node of interest, the software extracts the relevant row from
the matrix, and uses only that row to influence the node visual property to which it has been assigned. In the case
where multiple nodes of interest are selected, an additional drop-down menu is provided, that allows you to prescribe
how those multiple rows of matrix data are combined in order to produce a single scalar value per node, which can
then be used to influence its relevant visual property.

82 Chapter 20. Using the connectome visualisation tool

CHAPTER 21

labelconvert: Explanation & demonstration

The labelconvert (previously labelconfig) step in Structural connectome construction has proven to be a
hurdle for many. It may be a ‘unique’ step in so far as that other software packages probably deal with this step
implicitly, but in MRtrix we prefer things to be explicit and modular. So here I'll go through an example to demonstrate
exactly what this command does.

21.1 Worked example

For this example, let’s imagine that we’re going to generate a structural connectome for Bert, the quintessential
FreeSurfer subject. Also, we’re going to generate the connectome based on the Desikan-Killiany atlas. The de-
fault FreeSurfer pipeline provides the volumetric image aparc+aseg.mgz; this is the file that will be used to define the
nodes of our connectome.

Looking at the raw image itself, each node possesses a particular intensity, corresponding to a particular integer value.
If we focus on the superior frontal gyrus in the right hemisphere, we can see that the image intensity is 2028 for this
structure.

This immediately presents a problem for constructing a connectome: if any streamline encountering this region were
written to row/column 2028, our connectome would be enormous, and consist mostly of zeroes (as most indices
between 1 and 2028 do not correspond to any structure). Therefore, what we’d prefer is to map the unique integer
index of this structure to a particular row/column index of the connectome; this should be done in such a way that all
structures of interest have a unique integer value between 1 and N, where N is the number of nodes in the connectome.

Now looking at the file FreeSurferColorLUT. txt provided with FreeSurfer, we see the following:

2026 ctx-rh-rostralanteriorcingulate 80 20 140

0
2027 ctx-rh-rostralmiddlefrontal 75 50 125 0
2028 ctx-rh-superiorfrontal 20 220 160 O
2029 ctx-rh-superiorparietal 20 180 140 0
2030 ctx-rh-superiortemporal 140 220 220 O

83

MRtrix Documentation, Release 3.0

-

&3 aparc+aseg.mgz

@File Elmage u/ Colourmap ﬁb‘iew

4 Tl:u:nL *

84

Chapter 21. labelconvert: Explanation & demonstration

MRtrix Documentation, Release 3.0

This gives us a meaningful name for this structure based on the integer index. It also gives us some colour information,
but let’s not worry about that for now.

Our goal then is to determine a new integer index for this structure, that will determine the row/column of our connec-
tome matrix that this structure corresponds to. This is dealt with by mapping the structure indices of this lookup table to
a new lookup table. For this example, let’s imagine that we’re using the default MRtrix lookup table for the FreeSurfer
Desikan-Killiany atlas segmentation: this is provided at shared/mrtrix3/labelconvert/fs_default.
txt.Examining this file in detail, we see the following:

74

R.RACG ctx-rh-rostralanteriorcingulate 80 20 140 255
75 R.RMFG ctx-rh-rostralmiddlefrontal 75 50 125 255
76 R.SFG ctx-rh-superiorfrontal 20 220 160 255
77 R.SPG ctx-rh-superiorparietal 20 180 140 255
78 R.STG ctx-rh-superiortemporal 140 220 220 255

(This file is in a slightly different format to FreeSurferColorLUT. txt; don’t worry about this for the time being)

This file contains the same structure name as the FreeSurfer look-up table, but it is assigned a different integer index
(76)! What’s going on?

The following is what the 1abelconvert command is actually going to do under the bonnet, using these two lookup
table files:

1. Read the integer value at each voxel of the input image

2. Convert the integer value into a string, based on the input lookup table file (FreeSurferColorLUT. txt)
3. Find this string in the output lookup table file (fs_default.txt)

4. Write the integer index stored in the output lookup table file for this structure to the voxel in the output image

This is what the actual command call looks like:

labelconvert S$SFREESURFER_HOME/subjects/bert/mri/aparc+aseg.mgz SFREESURFER_HOME/
—FreeSurferColorLUT.txt ~/mrtrix3/src/connectome/config/fs_default.txt bert_parcels.

And this is what the resulting image looks like:

The integer labels of the underlying grey matter parcels have been converted from the input lookup table to the
output lookup table (hence the name labelconvert). They now increase monotonically from 1 to the maximum
index, with no ‘gaps’ (i.e. ununsed integer values) in between. Therefore, when you construct your connectome
using tck2connectome, the connectome matrix will only be as big as it needs to be to store all of the node-node
connectivity information.

21.2 Design rationale

Making this step of re-indexing parcels explicit in connectome construction has a few distinct advantages:

* You can use parcellations from any software / atlas: just provide the structure index / name lookup table that
comes with whatever software / atlas provides the parcellation, and define an appropriate target lookup table that
defines which index you want each structure to map to.

* tck2connectome can be ‘dumb and blind’: it reads the integer indices at either end of the streamline, and
that’s the row/column of the connectome matrix that needs to be incremented.

21.2. Design rationale 85

MRtrix Documentation, Release 3.0

&5 nodes.mif

@File Elmage u/ Colourmap ﬁb‘iew

4 Tl:u:nL o

86

Chapter 21. labelconvert:

Explanation & demonstration

MRtrix Documentation, Release 3.0

* You can have your grey matter parcels appear in any order in your matrices: just define a new lookup table file.
Doing this prior to connectome construction is less likely to lead to heartache than re-ordering the rows and
columns in e.g. Matlab, where you may lose track of which matrices have been re-ordered and which have not.

* You can remove structures from the connectome, or merge multiple structures into a single parcel, just by
omitting or duplicating indices appropriately in the target lookup table file.

* Looking at your matrices and need to find out what structure corresponds to a particular row/column? Just look
at the config file!

Obviously if your parcellation image already has node indices that increase monotonically from 1, and you’re happy
enough with the numerical order of the nodes, you don’t actually need to use the labelconvert step at all.

21.3 Custom desigh connectomes

Some notes for anybody that wishes to define their own configuration files (either for re-ordering nodes, changing
selection of nodes, or using parcellations from alternative sources):

* If you wish to omit nodes from your connectome (e.g. the cerebellar hemispheres), you may be better off making
these nodes the largest indices in your connectome, but then cropping them from the connectome matrices
retrospectively, rather than omitting them from the parcellation image entirely: If you were to do the latter,
streamlines that would otherwise be assigned to your unwanted nodes may instead be erroneously assigned to
the nearest node that is part of your connectome (exactly what happens here will depend on the streamline-node
assignment mechanism used).

* The command labelconvert is capable of reading in look-up tables in a number of formats. If you wish to
define your own lookup table, you will need to conform to one of these formats in order for MRtrix commands
to be able to import it. If you are using an atlas where the look-up table does not conform to any of these formats
(and hence MRtrix refuses to import it), you can either manually manipulate it into a recognized format, or if it
is likely that multiple users will be using that parcellation scheme, we may choose to add a parser to the MRtrix
code: contact the developers directly if this is the case.

21.3. Custom design connectomes 87

MRtrix Documentation, Release 3.0

88

Chapter 21. labelconvert: Explanation & demonstration

CHAPTER 22

Global tractography

22.1 Introduction

Global tractography is the process of finding the full track configuration that best explains the measured DWI data. As
opposed to streamline tracking, global tractography is less sensitive to noise, and the density of the resulting tractogram
is directly related to the data at hand.

As of version 3.0, MRtrix supports global tractography using a multi-tissue spherical convolution model, as introduced
in Christiaens et al. (2015). This method extends the method of Reisert et al. (2011) to multi-shell response functions,
estimated from the data, and adopts the multi-tissue model presented in Jeurissen et al. (2014) to account for partial
voluming.

22.2 User guide

For multi-shell DWI data, the most common use will be:

tckglobal dwi.mif wmr.txt -riso csfr.txt -riso gmr.txt -mask mask.mif -niter 1e9 -fod
—~fod.mif -fiso fiso.mif tracks.tck

In this example, dwi.mif is the input dataset, including the gradient table, and tracks.tck is the output trac-
togram. wmr.txt, gmr.txt and csfr.txt are tissue response functions (cf. next section). Optional output
images fod.mif and fiso.mif contain the predicted WM fODF and isotropic tissue fractions of CSF and GM respec-
tively, estimated as part of the global optimization and thus affected by spatial regularization.

22.2.1 Input response functions

Input response functions for (single fibre) white matter, grey matter, and CSF can be estimated from multi-shell data
in prior tissue segmentations, as described in Jeurissen et al. (2014) and Christiaens et al. (2015).

89

MRtrix Documentation, Release 3.0

Obtaining good segmentations of WM, GM and CSF will typically require T1 data. While MRtrix doesn’t implement
segmentation methods itself, it does provide a script that calls the relevant FSL or Freesurfer tools to obtain a tissue
segmentation in the appropriate format, for example:

’5ttgen fsl Tl.mif 5tt.mif

Note that the T1 image must be aligned with (e.g. registered to) the DWI data. See this page for more information.

Response functions for single-fibre WM, GM, and CSF, can then be estimated using:

’dwinesponse msmt_5tt dwi.mif S5tt.mif wm.txt gm.txt csf.txt

For a detailed explanation of different strategies for response function estimation, have a look at this page.

22.2.2 Parameters

—niter: The number of iterations in the optimization. Although the default value is deliberately kept low, a full brain
reconstruction will require at least 100 million iterations.

—1max: Maximal order of the spherical harmonics basis.
—-length: Length of each track segment (particle), which determines the resolution of the reconstruction.

-weight: Weight of each particle. Decreasing its value by a factor of two will roughly double the number of
reconstructed tracks, albeit at increased computation time.

Particle potential —ppot: The particle potential essentially associates a cost to each particle, relative to its weight. As
such, we are in fact trying to reconstruct the data as well as possible, with as few particles as needed. This ensures that
there is sufficient proof for each individual particle, and hence avoids that a bit of noise in the data spurs generation
of new (random) particles. Think of it as a parameter that balances sensitivity versus specificity. A higher particle
potential requires more proof in the data and therefore leads to higher specificity; a smaller value increases sensitivity.

Connection potential —cpot: The connection potential is the driving force for connecting segments and hence building
tracks. Higher values increase connectivity, at the cost of increased invalid connections.

22.2.3 Ancillary outputs

—fod: Outputs the predicted fibre orientation distribution function (fODF) as an image of spherical harmonics co-
efficients. This fODF is estimated as part of the global track optimization, and therefore incorporates the spatial
regularization that it imposes. Internally, the fODF is represented as a discrete sum of apodized point spread functions
(aPSF) oriented along the directions of all particles in the voxel, akin to track orientation distribution imaging (TODI,
Dhollander et al., 2014). This internal representation is used to predict the DWI signal upon every change to the
particle configuration.

—fiso: Outputs the estimated density of all isotropic tissue components, as multiple volumes in one 4-D image in
the same order as their respective —riso kernels were provided.

—eext: Outputs the residual data energy image, including the L1-penalty imposed by the particle potential.

22.3 References

1. D. Christiaens, M. Reisert, T. Dhollander, S. Sunaert, P. Suetens, and F. Maes. Global tractography of multi-
shell diffusion-weighted imaging data using a multi-tissue model. Neurolmage, 123 (2015) pp. 89-101 [SD
link]

90 Chapter 22. Global tractography

http://mrtrix.readthedocs.org/en/latest/workflows/act.html#tissue-segmentation
http://mrtrix.readthedocs.org/en/latest/concepts/response_function_estimation.html#msmt-5tt
http://www.sciencedirect.com/science/article/pii/S1053811915007168
http://www.sciencedirect.com/science/article/pii/S1053811915007168

MRtrix Documentation, Release 3.0

2. M. Reisert, I. Mader, C. Anastasopoulos, M. Weigel, S. Schnell, and V. Kiselev. Global fiber reconstruction
becomes practical. Neurolmage, 54 (2011) pp. 955-962 [SD link]

3. B. Jeurissen, J.D. Tournier, T. Dhollander, A. Connelly, and J. Sijbers. Multi-tissue constrained spherical de-

convolution for improved analysis of multi-shell diffusion MRI data. Neurolmage, 103 (2014), pp. 411-426 [SD
link]

4. T. Dhollander, L. Emsell, W. Van Hecke, F. Maes, S. Sunaert, and P. Suetens. Track Orientation Density Imaging

(TODI) and Track Orientation Distribution (TOD) based tractography. Neurolmage, 94 (2014), pp. 312-336
[SD link]

22.3. References 91

http://www.sciencedirect.com/science/article/pii/S1053811910011973
http://www.sciencedirect.com/science/article/pii/S1053811914006442
http://www.sciencedirect.com/science/article/pii/S1053811914006442
http://www.sciencedirect.com/science/article/pii/S1053811913012676

MRtrix Documentation, Release 3.0

92

Chapter 22. Global tractography

CHAPTER 23

ISMRM tutorial - Structural connectome for Human Connectome Project
(HCP)

This document duplicates the information provided during the MRtrix3 demonstration at ISMRM 2015 in Toronto. We
will generate a structural connectome for quintessential Human Connectome Project subject 100307. Some of these
instructions will be specific to HCP data, others will be more general recommendations.

Note that this page is being retained as a reference of the steps demonstrated during the ISMRM 2015 meeting; it does
not constitute an up-to-date ‘recommended’ processing pipeline for HCP data.

23.1 Necessary files

To duplicate our methods and results, you will need to download the appropriate files, accessible through the following
steps:

* https://db.humanconnectome.org/

* WU-Minn HCP Data - 900 Subjects + 7T

* Download Image Data: Single subject

* Session Type: 3T MRI

* Processing level: Preprocessed

» Package Type: MSM-Sulc + MSM-All

¢ add Structural Preprocessed and Diffusion Preprocessed to queue

The actual files within these compressed downloads that we will make use of are:

23.1.1 Diffusion preprocessed files

¢ bvals

¢ bvecs

93

https://db.humanconnectome.org/

MRtrix Documentation, Release 3.0

* data.nii.gz

* nodif_brain_mask.nii.gz

23.1.2 Structural preprocessed files

* aparc+aseg.nii.gz

* Tlw_acpc_dc_restore_brain.nii.gz

23.2 Structural image processing

1. Generate a tissue-segmented image appropriate for Anatomically-Constrained Tractography:
5ttgen fsl Tlw_acpc_dc_restore_brain.nii.gz 5TT.mif -premasked

Note that it is not necessary to use a tissue-segmented image that has the same resolution as the diffusion images;
MRtrix3 will happily acquire interpolated values from each of them separately as tracking is performed. This allows
ACT to exploit the higher spatial resolution of the tissue-segmented anatomical image, but still use the diffusion image
information at its native resolution also.

2. Collapse the multi-tissue image into a 3D greyscale image for visualisation:
5tt2vis S5TT.mif vis.mif; mrview vis.mif

If the tissue segmentation image contains clearly erroneous tissue labels, you can delineate them manually using the
ROI editor tool in mrview, then apply your corrections to the tissue data using the 5ttedit command.

3. Modify the integer values in the parcellated image, such that the numbers in the image no longer correspond to
entries in FreeSurfer’s colour lookup table, but rows and columns of the connectome:

labelconvert aparct+aseg.nii.gz FreeSurferColorLUT.txt fs_default.txt nodes.mif

File FreeSurferColorLUT. txt is provided with FreeSurfer in its root directory. The target lookup table file
(fs_default.txt in this case) is a handy text file that provides a structure name for every row / column of
the connectome matrix: it is provided as part of MRtrix3, and located at shared/mrtrix3/labelconvert/
fs_default.txt within the MRtrix3 folder.

4. Replace FreeSurfer’s estimates of sub-cortical grey matter structures with estimates from FSL’s FIRST tool:

labelsgmfix nodes.mif Tlw_acpc_dc_restore_brain.nii.gz fs_default.txt
nodes_fixSGM.mif -premasked

23.3 Diffusion image processing

1. Convert the diffusion images into a non-compressed format (not strictly necessary, but will make subsequent
processing faster), embed the diffusion gradient encoding information within the image header, re-arrange the
data strides to make volume data contiguous in memory for each voxel, and convert to floating-point represen-
tation (makes data access faster in subsequent commands):

mrconvert data.nii.gz DWI.mif -fslgrad bvecs bvals -datatype float32 -stride
0,0,0,1

2. Generate a mean b=0 image (useful for visualisation):
dwiextract DWI.mif - -bzero | mrmath - mean meanbO.mif -axis 3

(If you are not familiar with the ‘I’ piping symbol, read more about it here)

94 Chapter 23. ISMRM tutorial - Structural connectome for Human Connectome Project (HCP)

MRtrix Documentation, Release 3.0

3. Estimate the response function; note that here we are estimating multi-shell, multi-tissue response functions:

dwi2response msmt_5tt DWI.mif 5TT.mif RF_WM.txt RF_GM.txt RF_CSF.txt -voxels
RF_voxels.mif

mrview meanb0.mif -overlay.load RF_voxels.mif -overlay.opacity 0.5 (check appropri-
ateness of response function voxel selections)

4. Perform Multi-Shell, Multi-Tissue Constrained Spherical Deconvolution:

dwi2fod msmt_csd DWI.mif RF_WM.txt WM_FODs.mif RF_GM.txt GM.mif RF_CSF.txt
CSF.mif -mask nodif brain_mask.nii.gz

mrconvert WM_FODs.mif - -coord 3 0 | mrcat CSF.mif GM.mif - tissueRGB.mif
—-axis 3

This generates a 4D image with 3 volumes, corresponding to the tissue densities of CSF, GM and WM, which will
then be displayed in mrview as an RGB image with CSF as red, GM as green and WM as blue (as was presented in
the MSMT CSD manuscript).

mrview tissueRGB.mif -odf.load_sh WM_FODs.mif (visually make sure that both the tissue segmen-
tations and the white matter FODs are sensible)

23.4 Connectome generation

1. Generate the initial tractogram:

tckgen WM_FODs.mif 100M.tck —-act 5TT.mif -backtrack -crop_at_gmwmi
-seed_dynamic WM_FODs.mif -maxlength 250 -select 100M -cutoff 0.06

Explicitly setting the maximum length is highly recommended for HCP data, as the default heuristic - 100 times the
voxel size - would result in a maximum length of 125mm, which would preclude the reconstruction of some longer
pathways.

We also suggest a reduced FOD amplitude cutoff threshold for tracking when using the MSMT CSD algorithm in
conjunction with ACT; this allows streamlines to reach the GM-WM interface more reliably, and does not result in
significant false positives since the MSMT algorithm does not produce many erroneous small FOD lobes.

2. Apply the Spherical-deconvolution Informed Filtering of Tractograms (SIFT) algorithm

This method reduces the overall streamline count, but provides more biologically meaningful estimates of structural
connection density:

tcksift 100M.tck WM_FODs.mif 10M_SIFT.tck —act 5TT.mif —-term_number 10M

If your system does not have adequate RAM to perform this process, the first recommendation is to reduce the spatial
resolution of the FOD image and provide this alternative FOD image to SIFT (this should have little influence on the
outcome of the algorithm, but will greatly reduce memory consumption):

mrresize WM_FODs.mif FOD_downsampled.mif -scale 0.5 —-interp sinc

If this still does not adequately reduce RAM usage, you will need to reduce the number of input streamlines to a level
where your processing hardware can successfully execute the 7cksift command, e.g.:

tckedit 100M.tck 50M.tck —-number 50M
Alternatively, if you’re feeling brave, you can give SIFT2 a try...

3. Map streamlines to the parcellated image to produce a connectome:

23.4. Connectome generation 95

MRtrix Documentation, Release 3.0

tck2connectome 10M_SIFT.tck nodes_fixSGM.mif connectome.csv

mrview nodes_fixSGM.mif —-connectome.init nodes_fixSGM.mif —-connectome.load
connectome.csv

96 Chapter 23. ISMRM tutorial - Structural connectome for Human Connectome Project (HCP)

CHAPTER 24

Fibre density and cross-section - Single shell DWI

24.1 Introduction

This tutorial explains how to perform fixel-based analysis of fibre density and cross-section using single-shell data.
While the focus here is on the analysis of Apparent Fibre Density (AFD) derived from FODs, other fixel-based mea-
sures related to fibre density can also be analysed with a few minor modifications to these steps (as outlined below).
We note that high b-value (>2000s/mm2) data is recommended to aid the interpretation of AFD being related to the
intra-axonal space. See the original paper for more details.

All steps in this tutorial have written as if the commands are being run on a cohort of images, and make extensive
use of the foreach script to simplify batch processing. This tutorial also assumes that the imaging dataset is organised
with one directory identifying the subject, and all files within identifying the image type. For example:

study/subjects/00]1_patient/dwi.mif
study/subjects/001_patient/wmfod.mif
study/subjects/002_control/dwi.mif
study/subjects/002_control/wmfod.mif

Note: All commands in this tutorial are run from the subjects path up until step 20, where we change directory to
the template path

For all MRtrix scripts and commands, additional information on the command usage and available command-line
options can be found by invoking the command with the ~help option. Please post any questions or issues on the
MRtrix community forum.

97

https://www.ncbi.nlm.nih.gov/pubmed/27639350
http://www.ncbi.nlm.nih.gov/pubmed/22036682
http://www.ncbi.nlm.nih.gov/pubmed/22036682
http://community.mrtrix.org/

MRtrix Documentation, Release 3.0

24.2 Pre-processsing steps

24.2.1 1. DWI denoising

The effective SNR of diffusion data can be improved considerably by exploiting the redundancy in the data to reduce
the effects of thermal noise. This functionality is provided in the command dwidenoise:

foreach * : dwidenoise IN/dwi.mif IN/dwi_denoised.mif

Note that this denoising step must be performed prior to any other image pre-processing: any form of image interpo-
lation (e.g. re-gridding images following motion correction) will invalidate the statistical properties of the image data
that are exploited by dwidenoise, and make the denoising process prone to errors. Therefore this process is applied as
the very first step.

24.2.2 2. DWI general pre-processing

The dwipreproc script is provided for performing general pre-processing of diffusion image data - this includes
eddy current-induced distortion correction, motion correction, and (possibly) susceptibility-induced distortion correc-
tion. Commands for performing this pre-processing are not yet implemented in MRtrix3; the dwipreproc script in
its current form is in fact an interface to the relevant commands that are provided as part of the FSL package. Installa-
tion of FSL (including eddy) is therefore required to use this script, and citation of the relevant articles is also required
(see the dwipreproc help page).

Usage of this script varies depending on the specific nature of the DWI acquisition with respect to EPI phase encoding
- full details are available within the DWI distortion correction using dwipreproc page, and the dwipreproc help file.

Here, only a simple example is provided, where a single DWI series is acquired where all volumes have an anterior-
posterior (A>>P) phase encoding direction:

foreach * : dwipreproc IN/dwi_denoised.mif IN/dwi_denoised_preproc.mif -rpe_none -pe_
—dir AP

24.2.3 3. Estimate a brain mask

Compute a brain mask:

’foreach * : dwiZ2mask IN/dwi_denoised_preproc.mif IN/dwi_mask.mif

24.3 AFD-specific pre-processsing steps

To enable robust quantitative comparisons of AFD across subjects three additional steps are required. Note these can
be skipped if analysing other DWI fixel-based measures related to fibre density (for example CHARMED).

24.3.1 4. Bias field correction

Because we recommend a global intensity normalisation, bias field correction is required as a pre-processing step to
eliminate low frequency intensity inhomogeneities across the image. DWI bias field correction is perfomed by first
estimating a correction field from the DWI b=0 image, then applying the field to correct all DW volumes. This can
be done in a single step using the dwibiascorrect script in MRtrix. The script uses bias field correction algorthims

98 Chapter 24. Fibre density and cross-section - Single shell DWI

http://fsl.fmrib.ox.ac.uk/
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/EDDY

MRtrix Documentation, Release 3.0

available in ANTS or FSL. In our experience the N4 algorithm in ANTS gives superiour results. To install N4 install
the ANTS package, then run perform bias field correction on DW images using:

foreach * : dwibiascorrect —-ants -mask IN/dwi_mask.mif IN/dwi_denoised_preproc.mif IN/
—dwi_denoised_preproc_bias.mif

24.3.2 5. Global intensity normalisation across subjects

As outlined &ere, a global intensity normalisation is required for AFD analysis. For single-shell data this can be
achieved using the dwiintensitynorm script. The script performs normalisation on all subjects within a study (using
a group-wise registration), and therefore the input and output arguments are directories containing all study images.
First create directories to store all the input and output images. From the subjects directory:

mkdir -p ../dwiintensitynorm/dwi_input
mkdir ../dwiintensitynorm/mask_input

You could copy all files into this directory, however symbolic linking them will save space:

foreach = : 1n -sr IN/dwi_denoised_preproc_bias.mif ../dwiintensitynorm/dwi_input/IN.
—mif
foreach * : 1ln —-sr IN/dwi_mask.mif ../dwiintensitynorm/mask_input/IN.mif

Perform intensity normalisation:

dwiintensitynorm ../dwiintensitynorm/dwi_input/ ../dwiintensitynorm/mask_input/ ../
—dwiintensitynorm/dwi_output/ ../dwiintensitynorm/fa_template.mif ../
—dwiintensitynorm/fa_template_wm_mask.mif

Link the output files back to the subject directories:

foreach ../dwiintensitynorm/dwi_output/* : 1ln -sr IN PRE/dwi_denoised_preproc_bias_
—norm.mif

The dwiintensitynorm script also outputs the study-specific FA template and white matter mask. It is recommended
that you check that the white matter mask is appropriate (i.e. does not contain CSF or voxels external to the brain.
Note it only needs to be a rough WM mask). If you feel the white matter mask needs to be larger or smaller you can
re-run dwiintensitynorm with a different —-fa_threshold option. Note that if your input brain masks include
CSF then this can cause spurious high FA values outside the brain which will may be included in the template white
matter mask.

Keeping the FA template image and white matter mask is also handy if additional subjects are added to the study at a
later date. New subjects can be intensity normalised in a single step by piping the following commands together. Run
from the subjects directory:

dwi2tensor new_subject/dwi_denoised_preproc_bias.mif -mask new_subject/dwi_mask.mif —
— | tensor2metric - -fa - | mrregister -force ../dwiintensitynorm/fa_template.mif - -
—mask2 new_subject/dwi_mask.mif -nl_scale 0.5,0.75,1.0 -nl_niter 5,5,15 -nl_warp - /
—tmp/dummy_file.mif | mrtransform ../dwiintensitynorm/fa_template_wm_mask.mif -

—template new_subject/dwi_denoised_preproc_bias.mif -warp - - | dwinormalise new_
—subject/dwi_denoised_preproc_bias.mif - ../dwiintensitynorm/dwi_output/new_subject.
—mif

Note: The above command may also be useful if you wish to alter the mask then re-apply the intensity normalisation
to all subjects in the study. For example you may wish to edit the mask using the ROI tool in mrview to remove white
matter regions that you hypothesise are affected by the disease (e.g. removing the corticospinal tract in a study of

24.3. AFD-specific pre-processsing steps 99

http://stnava.github.io/ANTs/
http://fsl.fmrib.ox.ac.uk/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3071855/
http://stnava.github.io/ANTs/

MRtrix Documentation, Release 3.0

motor neurone disease due to T2 hyperintensity). You also may wish to redefine the mask completely, for example in
an elderly population (with larger ventricles) it may be appropriate to intensity normalise using the median b=0 CSF.
This could be performed by manually masking partial-volume-free CSF voxels, then running the above command with
the CSF mask instead of the fa_template_wm_mask.mif.

Warning: We also strongly recommend you that you check the scale factors applied during intensity normalisation
are not influenced by the variable of interest in your study. For example if one group contains global changes in
white matter T2 then this may directly influence the intensity normalisation and therefore bias downstream AFD
analysis. To check this we recommend you perform an equivalence test to ensure mean scale factors are the same
between groups. To output the scale factor applied for all subjects use mrinfo ../dwiintensitynorm/
dwi_output/* —-property dwi_norm_scale_factor.

24.3.3 6. Computing a group average response function

As described here, using the same response function when estimating FOD images for all subjects enables differences
in the intra-axonal volume (and therefore DW signal) across subjects to be detected as differences in the FOD ampli-
tude (the AFD). To ensure the response function is representative of your study population, a group average response
function can be computed by first estimating a response function per subject, then averaging with the script:

foreach » : dwi2response tournier IN/dwi_denoised_preproc_bias_norm.mif IN/response.
average_response x/response.txt ../group_average_response.txt

24.4 Fixel-based analysis steps

24.4.1 7. Upsampling DW images

Upsampling DWI data before computing FODs can increase anatomical contrast and improve downstream spatial
normalisation and statistics. We recommend upsampling to a voxel size of 1.25mm (for human brains). If you have
data that has smaller voxels than 1.25mm, then we recommend you can skip this step:

foreach * : mrresize IN/dwi_denoised_preproc_bias_norm.mif -vox 1.25 IN/dwi_denoised_
—preproc_bias_norm_upsampled.mif

24.4.2 8. Compute upsampled brain mask images

Compute a whole brain mask from the upsampled DW images:

foreach * : dwiZ2mask IN/dwi_denoised_preproc_bias_norm_upsampled.mif IN/dwi_mask__
—upsampled.mif

24.4.3 9. Fibre Orientation Distribution estimation

When performing analysis of AFD, Constrained Spherical Deconvolution (CSD) should be performed using the group
average response function computed at step . If not using AFD in the fixel-based analysis (and therefore you have
skipped steps 4-6), however you still want to compute FODs for image registration, then you can use a subject-specific

100 Chapter 24. Fibre density and cross-section - Single shell DWI

http://www.ncbi.nlm.nih.gov/pubmed/22036682
http://www.sciencedirect.com/science/article/pii/S1053811914007472

MRtrix Documentation, Release 3.0

response function. Note that dwi2fod csd can be used, however here we use dwi2fod msmt_csd (even with
single shell data) to benefit from the hard non-negativity constraint:

foreach * : dwiextract IN/dwi_denoised_preproc_bias_norm_upsampled.mif - \| dwi2fod
—msmt_csd — ../group_average_response.txt IN/wmfod.mif -mask IN/dwi_mask_upsampled.
—mif

24.4.4 10. Generate a study-specific unbiased FOD template

Population template creation is a very time consuming step in a fixel-based analysis. If you have a very large number
of subjects in your study, we recommend building the template from a limited subset of 30-40 individuals. Subjects
should be chosen to ensure the generated template is representative of your population (e.g. similar number of patients
and controls). To build a template, place all FOD images in a single folder. We also highly recommend placing a set
of corresponding mask images (with the same prefix as the FOD images) in another folder. Using masks can speed up
registration significantly as well as result in a much more accurate template in specific scenarios:

mkdir -p ../template/fod_input
mkdir ../template/mask_input

Symbolic link all FOD images (and masks) into a single input folder. If you have fewer than 40 subjects in your study,
you can use the entire population to build the template:

foreach * : 1ln —-sr IN/wmfod.mif ../template/fod_input/PRE.mif
foreach % : 1ln -sr IN/dwi_mask_upsampled.mif ../template/mask_input/PRE.mif

Alternatively, if you have more than 40 subjects you can randomly select a subset of the individuals. If your study has
multiple groups, then ideally you want to select the same number of subjects from each group to ensure the template
is un-biased. Assuming the subject directory labels can be used to identify members of each group, you could use:

foreach "1ls -d spatient | sort -R | tail -20° : 1ln -sr IN/wmfod.mif ../template/fod_
—input/PRE.mif ";" 1n -sr IN/dwi_mask_upsampled.mif ../template/mask_input/PRE.mif
foreach “1s —-d xcontrol | sort -R | tail -20° : 1ln —-sr IN/wmfod.mif ../template/fod_

—input/PRE.mif ";" 1n -sr IN/dwi_mask_upsampled.mif ../template/mask_input/PRE.mif

Run the template building script as follows:

$ population_template ../template/fod_input -mask_dir ../template/mask_input ../
—template/wmfod_template.mif -voxel_size 1.25

If you are building a template from your entire study population, run the population_template script use the
-warp_dir warps option to output a directory containing all subject warps to the template. Saving the warps here
will enable you to skip the next step. Note that the warps used (and therefore output) from the population_template
script are 5D images containing both forward and reverse warps (see mrregister for more info). After population
template creation is complete, to convert this warp format to a more conventional 4D deformation field format ready
for the subsequent steps, run

$ foreach ../template/warps/* : warpconvert —-type warpfull2deformation —-template ../
—template/wmfod_template.mif IN PRE/subject2template_warp.mif

24.4.5 11. Register all subject FOD images to the FOD template

Register the FOD image from all subjects to the FOD template image:

24.4. Fixel-based analysis steps 101

MRtrix Documentation, Release 3.0

foreach » : mrregister IN/wmfod.mif -maskl IN/dwi_mask_upsampled.mif ../template/
—wmfod_template.mif -nl_warp IN/subject2template_warp.mif IN/template2subject_warp.
—mif

24.4.6 12. Compute the intersection of all subject masks in template space

Different subjects will have subtly different brain coverage. To ensure subsequent analysis is performed in voxels that
contain data from all subjects, we warp all subject masks into template space and compute the mask intersection. For
each subject:

foreach » : mrtransform IN/dwi_mask_upsampled.mif -warp IN/subject2template_warp.mif -
—interp nearest IN/dwi_mask_in_template_space.mif

Compute the intersection of all warped masks:

mrmath */dwi_mask_in_template_space.mif min ../template/mask_intersection.mif

24.4.7 13. Compute a white matter template analysis fixel mask

Here we perform a 2-step threshold to identify template white matter fixels to be included in the analysis. Fixels in
the template fixel analysis mask are also used to identify the best fixel correspondence across all subjects (i.e. match
fixels across subjects within a voxel).

Compute a template AFD peaks fixel image:

fod2fixel ../template/wmfod_template.mif -mask ../template/mask_intersection.mif ../
—template/fixel_temp -peak peaks.mif

Note: Fixel images in this step are stored using the Fixel image (directory) format, which exploits the filesystem to
store all fixel data in a directory.

Next view the peaks file using the fixel plot tool in mrview and identify an appropriate threshold that removes peaks
from grey matter, yet does not introduce any ‘holes’ in your white matter (approximately 0.33).

Threshold the peaks fixel image:

mrthreshold ../template/fixel_temp/peaks.mif -abs 0.33 ../template/fixel_temp/mask.mif

Generate an analysis voxel mask from the fixel mask. The median filter in this step should remove spurious voxels
outside the brain, and fill in the holes in deep white matter where you have small peaks due to 3-fibre crossings:

fixel2voxel ../template/fixel_temp/mask.mif max — | mrfilter - median ../template/
—voxel_mask.mif
rm -rf ../template/fixel_temp

Recompute the fixel mask using the analysis voxel mask. Using the mask allows us to use a lower AFD threshold than
possible in the steps above, to ensure we have included fixels with low AFD inside white matter (e.g. areas with fibre
crossings):

fod2fixel -mask ../template/voxel_mask.mif —-fmls_peak_value 0.2 ../template/wmfod_
—template.mif ../template/fixel_mask

102 Chapter 24. Fibre density and cross-section - Single shell DWI

MRtrix Documentation, Release 3.0

Note: We recommend having no more than 500,000 fixels in the analysis fixel mask (you can check this by mrinfo
-size ../template/fixel/mask.mif, and looking at the size of the image along the 1st dimension), oth-
erwise downstream statistical analysis (using fixelcfestats) will run out of RAM). A mask with 500,000 fixels will
require a PC with 128GB of RAM for the statistical analysis step. To reduce the number of fixels, try changing the
thresholds in this step, or reduce the extent of upsampling in step 7.

24.4.8 14. Warp FOD images to template space

Note that here we warp FOD images into template space without FOD reorientation. Reorientation will be performed
in a separate subsequent step:

foreach * : mrtransform IN/wmfod.mif -warp IN/subject2template_warp.mif -
—noreorientation IN/fod_in_template_space.mif

24.4.9 15. Segment FOD images to estimate fixels and their apparent fibre density
(FD)

Here we segment each FOD lobe to identify the number and orientation of fixels in each voxel. The output also
contains the apparent fibre density (AFD) value per fixel estimated as the FOD lobe integral (see here for details on
FOD segmentation). Note that in the following steps we will use a more generic shortened acronym - Fibre Density
(FD) instead of AFD, since the following steps can also apply for other measures of fibre density (see the note below).
The terminology is also consistent with our recent work:

foreach * : fod2fixel IN/fod_in_template_space.mif -mask ../template/voxel_mask.mif
—IN/fixel_in_template_space —-afd fd.mif

Note: If you would like to perform fixel-based analysis of metrics derived from other diffusion MRI models (e.g.
CHARMED), replace steps 14 & 15. For example, in step 14 you can warp pre-processed DW images (also without
any reorientation). In step 15 you could then estimate your DWI model of choice, and output the FD related measure
to the Fixel image (directory) format, ready for the subsequent fixel reorientation step.

24.4.10 16. Reorient fixel orientations

Here we reorient the direction of all fixels based on the Jacobian matrix (local affine transformation) at each voxel in
the warp. Note that in-place fixel reorientation can be performed by specifing the output fixel folder to be the same as
the input, and using the —force option:

foreach » : fixelreorient IN/fixel_in_template_space IN/subject2template_warp.mif IN/
—~fixel_in_template_space —-—force

24.4.11 17. Assign subject fixels to template fixels

In step 10 & 11 we obtained spatial correspondence between subject and template. In step 16 we corrected the fixel
orientations to ensure angular correspondence of the segmented peaks of subject and template. Here, for each fixel
in the template fixel analysis mask, we identify the corresponding fixel in each voxel of the subject image and assign
the FD value of the subject fixel to the corresponding fixel in template space. If no fixel exists in the subject that

24.4. Fixel-based analysis steps 103

http://www.sciencedirect.com/science/article/pii/S1053811912011615
https://www.ncbi.nlm.nih.gov/pubmed/27639350

MRtrix Documentation, Release 3.0

corresponds to the template fixel then it is assigned a value of zero. See this paper for more information. In the
command below, you will note that the output fixel directory is the same for all subjects. This directory now stores
data for all subjects at corresponding fixels, ready for input to fixelcfestats in step 22 below:

foreach * : fixelcorrespondence IN/fixel_in_template_space/fd.mif ../template/fixel_
—mask ../template/fd PRE.mif

24.4.12 18. Compute fibre cross-section (FC) metric

Apparent fibre density, and other related measures that are influenced by the quantity of restricted water, only per-
mit the investigation of group differences in the number of axons that manifest as a change to within-voxel density.
However, depending on the disease type and stage, changes to the number of axons may also manifest as macroscopic
differences in brain morphology. This step computes a fixel-based metric related to morphological differences in fibre
cross-section, where information is derived entirely from the warps generated during registration (see this paper for
more information):

foreach * : warp2metric IN/subject2template_warp.mif —-fc ../template/fixel_mask ../
—template/fc IN.mif

Note that the FC files will be used in the next step. However, for group statistical analysis of FC we recommend taking
the log(FC) to ensure data are centred about zero and normally distributed. We could place all the log(FC) fixel data
files in the same fixel directory as the FC files (as long as they are named differently. However to keep things tidy,
create a separate fixel directory to store the log(FC) data and copy the fixel index and directions file across:

mkdir ../template/log_fc
cp ../template/fc/index.mif ../template/fc/directions.mif ../template/log_fc
foreach » : mrcalc ../template/fc/IN.mif -log ../template/log_fc/IN.mif

24.4.13 19. Compute a combined measure of fibre density and cross-section (FDC)

To account for changes to both within-voxel fibre density and macroscopic atrophy, fibre density and fibre cross-section
must be combined (a measure we call fibre density & cross-section, FDC). This enables a more complete picture of
group differences in white matter. Note that as discussed in this paper, group differences in FD or FC alone must be
interpreted with care in crossing-fibre regions. However group differences in FDC are more directly interpretable. To
generate the combined measure we ‘modulate’ the FD by FC:

mkdir ../template/fdc

cp ../template/fc/index.mif cp ../template/fc/directions.mif ../template/fdc

foreach *» : mrcalc ../template/fd/IN.mif ../template/fc/IN.mif -mult ../template/fdc/
—IN.mif

24.4.14 20. Perform whole-brain fibre tractography on the FOD template

Statistical analysis using connectivity-based fixel enhancement exploits connectivity information derived from prob-
abilistic fibre tractography. To generate a whole-brain tractogram from the FOD template. Note the remaining steps
from here on are executed from the template directory:

cd ../template
tckgen —-angle 22.5 -maxlen 250 -minlen 10 -power 1.0 wmfod_template.mif -seed_image,,
—voxel mask.mif —-mask voxel mask.mif -select 20000000 tracks_20_million.tck

104 Chapter 24. Fibre density and cross-section - Single shell DWI

http://www.ncbi.nlm.nih.gov/pubmed/26004503
https://www.ncbi.nlm.nih.gov/pubmed/27639350
https://www.ncbi.nlm.nih.gov/pubmed/27639350
http://www.ncbi.nlm.nih.gov/pubmed/26004503

MRtrix Documentation, Release 3.0

24.4.15 21. Reduce biases in tractogram densities

Perform SIFT to reduce tractography biases in the whole-brain tractogram:

tcksift tracks_20_million.tck fod_template.mif tracks_2_million_sift.tck -term_number
2000000

24.4.16 22. Perform statistical analysis of FD, FC, and FDC

Statistical analysis is performed using connectivity-based fixel enhancement, with a separate analysis for FD, FC, and
FDC as follows:

fixelcfestats fd files.txt design_matrix.txt contrast_matrix.txt input_tracks_2_
—million_sift.tck stats_fd

fixelcfestats log_fc files.txt design_matrix.txt contrast_matrix.txt input_tracks_2_
—million_sift.tck stats_log_fc

fixelcfestats fdc files.txt design_matrix.txt contrast_matrix.txt input_tracks_2_
—million_sift.tck stats_fdc

Where the input files.txt is a text file containing the filename of each file (i.e. not the full path) to be analysed inside
the input fixel directory, each filename on a separate line. The line ordering should correspond to the lines in the file
design_matrix.txt. Note that for correlation analysis, a column of 1’s will not be automatically included (as
per FSL randomise). Note that fixelcfestats currently only accepts a single contrast. However if the opposite
(negative) contrast is also required (i.e. a two-tailed test), then use the —neg option. Several output files will generated
all starting with the supplied prefix.

Note: We recommend having no more than 500,000 fixels in the analysis fixel mask (you can check this by mrinfo
-size ../template/fixel template/mask.mif, and looking at the size of the image along the Ist di-
mension), otherwise fixelcfestats will run out of RAM. A mask with 500,000 fixels will require a PC with 128GB of
RAM for the statistical analysis step. To reduce RAM requirements, you could reduce the number of fixels by reducing
the extent of upsampling, or apply a higher threshold when computing the fixel analysis mask (at the risk of removing
WM regions from your analysis); further discussion in the ‘Commands crashing due to memory requirements‘_
section.

24.4.17 23. Visualise the results

To view the results load the population FOD template image in mrview, and overlay the fixel images using the vector
plot tool. Note that p-value images are saved as 1-p-value. Therefore to visualise all p-values < 0.05, threshold the
fixels using the fixel plot tool at 0.95.

24.4. Fixel-based analysis steps 105

http://www.ncbi.nlm.nih.gov/pubmed/26004503

MRtrix Documentation, Release 3.0

106 Chapter 24. Fibre density and cross-section - Single shell DWI

CHAPTER 25

Fibre density and cross-section - Multi-tissue CSD

25.1 Introduction

This tutorial explains how to perform fixel-based analysis of fibre density and cross-section with fibre orientation
distributions (FODs) computing using multi-tissue CSD using single-shell data or multi-shell data. We note that high
b-value (>2000s/mm?2) data is recommended to aid the interpretation of AFD being related to the intra-axonal space.
See the original paper for more details.

All steps in this tutorial have written as if the commands are being run on a cohort of images, and make extensive
use of the foreach script to simplify batch processing. This tutorial also assumes that the imaging dataset is organised
with one directory identifying the subject, and all files within identifying the image type. For example:

study/subjects/001_patient/dwi.mif
study/subjects/001_patient/wmfod.mif
study/subjects/002_control/dwi.mif
study/subjects/002_control/wmfod.mif

Note: All commands in this tutorial are run from the subjects path up until step 19, where we change directory to
the template path

For all MRtrix scripts and commands, additional information on the command usage and available command-line
options can be found by invoking the command with the —help option. Please post any questions or issues on the
MRtrix community forum.

25.2 Pre-processsing steps

25.2.1 1. DWI denoising

The effective SNR of diffusion data can be improved considerably by exploiting the redundancy in the data to reduce
the effects of thermal noise. This functionality is provided in the command dwidenoise:

107

https://www.ncbi.nlm.nih.gov/pubmed/27639350
https://www.researchgate.net/publication/301766619_A_novel_iterative_approach_to_reap_the_benefits_of_multi-tissue_CSD_from_just_single-shell_b0_diffusion_MRI_data
https://www.ncbi.nlm.nih.gov/pubmed/25109526
http://www.ncbi.nlm.nih.gov/pubmed/22036682
http://community.mrtrix.org/

MRtrix Documentation, Release 3.0

foreach * : dwidenoise IN/dwi.mif IN/dwi_denoised.mif

Note that this denoising step must be performed prior to any other image pre-processing: any form of image interpo-
lation (e.g. re-gridding images following motion correction) will invalidate the statistical properties of the image data
that are exploited by dwidenoise, and make the denoising process prone to errors. Therefore this process is applied as
the very first step.

25.2.2 2. DWI general pre-processing

The dwipreproc script is provided for performing general pre-processing of diffusion image data - this includes
eddy current-induced distortion correction, motion correction, and (possibly) susceptibility-induced distortion correc-
tion. Commands for performing this pre-processing are not yet implemented in MRtrix3; the dwipreproc script in
its current form is in fact an interface to the relevant commands that are provided as part of the FSL package. Installa-
tion of FSL (including eddy) is therefore required to use this script, and citation of the relevant articles is also required
(see the dwipreproc help page).

Usage of this script varies depending on the specific nature of the DWI acquisition with respect to EPI phase encoding
- full details are available within the DWI distortion correction using dwipreproc page, and the dwipreproc help file.

Here, only a simple example is provided, where a single DWI series is acquired where all volumes have an anterior-
posterior (A>>P) phase encoding direction:

foreach * : dwipreproc IN/dwi_denoised.mif IN/dwi_denoised_preproc.mif —-rpe_none -pe_
—dir AP

25.2.3 3. Bias field correction

Bias field correction is important to deal with spatial intensity inhomogeneities. Even though this FBA pipeline will
account for these as well (in the later mmormalise step, which is furthermore crucial to correct for global intensity
differences between subjects), performing bias field correction at this stage will allow for more accurate estimation of
the tissue response functions as well as the individual subject brain masks.

This can be done in a single step using the dwibiascorrect script in MRtrix. The script uses bias field correction
algorthims available in ANTS or FSL. In our experience the N4 algorithm in ANTS gives far superior results. To
install N4, install the ANTS package, then perform bias field correction on DW images using:

foreach * : dwibiascorrect —ants IN/dwi_denoised_preproc.mif IN/dwi_denoised_preproc_
—bias.mif

25.3 Fixel-based analysis steps

25.3.1 4. Computing group average tissue response functions

As described here, using the same response function when estimating FOD images for all subjects enables differences
in the intra-axonal volume (and therefore DW signal) across subjects to be detected as differences in the FOD ampli-
tude (the AFD). To ensure the response function is representative of your study population, a group average response
function can be computed by first estimating a response function per subject, then averaging with the script:

foreach * : dwi2response dhollander IN/dwi_denoised_preproc_bias.mif IN/response_wmnm.
—txt IN/response_gm.txt IN/response_csf.txt
average_response x/response_wm.txt ../group_average_response_wm.txt

(continues on next page)

108 Chapter 25. Fibre density and cross-section - Multi-tissue CSD

http://fsl.fmrib.ox.ac.uk/
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/EDDY
http://stnava.github.io/ANTs/
http://fsl.fmrib.ox.ac.uk/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3071855/
http://stnava.github.io/ANTs/
http://www.ncbi.nlm.nih.gov/pubmed/22036682

MRtrix Documentation, Release 3.0

(continued from previous page)

average_response x/response_gm.txt ../group_average_response_gm.txt
average_response x/response_csf.txt ../group_average_response_csf.txt

25.3.2 5. Upsampling DW images

Upsampling DWI data before computing FODs can increase anatomical contrast and improve downstream spatial
normalisation and statistics. We recommend upsampling to a voxel size of 1.25mm (for human brains). If you have
data that has smaller voxels than 1.25mm, then we recommend you can skip this step:

foreach * : mrresize IN/dwi_denoised_preproc_bias.mif -vox 1.25 IN/dwi_denoised_
—preproc_bias_upsampled.mif

25.3.3 6. Compute upsampled brain mask images

Compute a whole brain mask from the upsampled DW images:

foreach * : dwiZ2mask IN/dwi_denoised_preproc_bias_upsampled.mif IN/dwi_mask_upsampled.

25.3.4 7. Fibre Orientation Distribution estimation

When performing analysis of AFD, Constrained Spherical Deconvolution (CSD) should be performed using the group
average response functions computed at step 3:

foreach * : dwi2fod msmt_csd IN/dwi_denoised_preproc_bias_upsampled.mif ../group_
—average_response_wm.txt IN/wmfod.mif ../group_average_response_gm.txt IN/gm.mif ../
—group_average_response_csf.txt IN/csf.mif -mask IN/dwi_mask_upsampled.mif

25.3.5 8. Intensity normalisation

This step performs global intensity normalisation in the log-domain by scaling all tissue types with a spatially smoothly
varying normalisation field:

foreach % : mtnormalise IN/wmfod.mif IN/wmfod_norm.mif IN/gm.mif IN/gm_norm.mif IN/
—~csf.mif IN/csf_norm.mif -mask IN/dwi_mask_upsampled.mif

If CSD was performed with the same single set of (average) WM, GM and CSF response functions for all subjects,
then the resulting output of mtnormalise should make the amplitudes comparable between those subjects as well.

Note that this step is crucial in the FBA pipeline, even if bias field correction was applied during the preprocessing
stage, as the latter does not correct for global intensity differences between subjects.

Warning: We recommend you that you check that the normalisation scale (computed during intensity normal-
isation) is not influenced by the variable of interest in your study. For example if one group contains global
(widespread) changes in white matter T2, then this may directly influence the intensity normalisation and therefore
bias downstream analysis of apparent fibre density (FD). To check this, you can perform an equivalence test to
ensure the overall normalisation scale does not differ between groups. To output these overall normalisation scales
for all subjects use mrinfo »/wmfod_norm.mif —-property lognorm_scale.

25.3. Fixel-based analysis steps 109

http://www.sciencedirect.com/science/article/pii/S1053811914007472

MRtrix Documentation, Release 3.0

25.3.6 9. Generate a study-specific unbiased FOD template

Population template creation is a very time consuming step in a fixel-based analysis. If you have a very large number
of subjects in your study, we recommend building the template from a limited subset of 30-40 individuals. Subjects
should be chosen to ensure the generated template is representative of your population (e.g. similar number of patients
and controls). To build a template, place all FOD images in a single folder. We also highly recommend placing a set
of corresponding mask images (with the same prefix as the FOD images) in another folder. Using masks can speed up
registration significantly as well as result in a much more accurate template in specific scenarios:

mkdir -p ../template/fod_input
mkdir ../template/mask_input

Symbolic link all FOD images (and masks) into a single input folder. If you have fewer than 40 subjects in your study,
you can use the entire population to build the template:

foreach » : 1ln -sr IN/wmfod_norm.mif ../template/fod_input/PRE.mif
foreach » : 1ln -sr IN/dwi_mask_upsampled.mif ../template/mask_input/PRE.mif

Alternatively, if you have more than 40 subjects you can randomly select a subset of the individuals. If your study has
multiple groups, then ideally you want to select the same number of subjects from each group to ensure the template
is un-biased. Assuming the subject directory labels can be used to identify members of each group, you could use:

foreach “1s —-d xpatient | sort -R | tail -20° : 1ln -sr IN/wmfod_norm.mif ../template/
—fod_input/PRE.mif ";" 1n -sr IN/dwi_mask_upsampled.mif ../template/mask_input/PRE.
foreach “1s -d xcontrol | sort -R | tail -20° : 1ln -sr IN/wmfod_norm.mif ../template/

—fod_input/PRE.mif ";" 1n -sr IN/dwi_mask_upsampled.mif ../template/mask_input/PRE.

Run the template building script as follows:

$ population_template ../template/fod_input -mask_dir ../template/mask_input ../
—template/wmfod_template.mif -voxel_ size 1.25

If you are building a template from your entire study population, run the population_template script use the
-warp_dir warps option to output a directory containing all subject warps to the template. Saving the warps here
will enable you to skip the next step. Note that the warps used (and therefore output) from the population_template
script are 5D images containing both forward and reverse warps (see mrregister for more info). After population
template creation is complete, to convert this warp format to a more conventional 4D deformation field format ready
for the subsequent steps, run

$ foreach ../template/warps/* : warpconvert —-type warpfull2deformation —-template ../
—template/wmfod_template.mif IN PRE/subject2template_warp.mif

25.3.7 10. Register all subject FOD images to the FOD template

Register the FOD image from all subjects to the FOD template image. Note you can skip this step if you built your
template from your entire population and saved the warps (see previous step):

foreach *» : mrregister IN/wmfod_norm.mif -maskl IN/dwi_mask_upsampled.mif ../template/
—wmfod_template.mif -nl_warp IN/subject2template_warp.mif IN/template2subject_warp.

110 Chapter 25. Fibre density and cross-section - Multi-tissue CSD

MRtrix Documentation, Release 3.0

25.3.8 11. Compute the intersection of all subject masks in template space

Different subjects will have subtly different brain coverage. To ensure subsequent analysis is performed in voxels that
contain data from all subjects, we warp all subject masks into template space and compute the mask intersection. For
each subject:

foreach » : mrtransform IN/dwi_mask_upsampled.mif -warp IN/subject2template_warp.mif -
—interp nearest IN/dwi_mask_in_template_space.mif

Compute the intersection of all warped masks:

mrmath +/dwi_mask_in_template_space.mif min ../template/mask_intersection.mif

25.3.9 12. Compute a white matter analysis voxel & fixel mask

Here we first identify all voxels having some white matter by thresholding the DC term (first SH coefficient) of the
multi-tissue FOD image:

mrconvert ../template/wmfod_template.mif -coord 3 0 - | mrthreshold - ../template/
—voxel_mask.mif

Next we segment all fixels from each FOD in the template image (see here for more information about a analysis
fixel mask). Note that the fixel image output from this step is stored using the Fixel image (directory) format, which
exploits the filesystem to store all fixel data in a directory:

fod2fixel -mask ../template/voxel_mask.mif -fmls_peak_value 0.1 ../template/wmfod_
—template.mif ../template/fixel_mask

You can visualise the output fixels using the fixel plot tool from mrview, and opening either the index.mif or
directions.mif foundin ../template/fixel_mask. The automatic thresholding step used above should
give you a mask that nicely covers all of white matter, however if not you can always try manually adjusting the
threshold with the mrthreshold -abs option.

Note: We recommend having no more than 500,000 fixels in the analysis_fixel _mask (you can check this by mrinfo
-size ../template/fixel_mask/directions.mif, and looking at the size of the image along the 1st
dimension), otherwise downstream statistical analysis (using fixelcfestats) may run out of RAM). A mask with 500,000
fixels will require a PC with 128GB of RAM for the statistical analysis step. To reduce the number of fixels, try
either reducing the number of voxels in the voxel mask by applying a manual threshold using —abs, increasing the
-fmls_peak_value, or reducing the extent of upsampling in step 4.

25.3.10 13. Warp FOD images to template space

Note that here we warp FOD images into template space without FOD reorientation. Reorientation will be performed
in a separate subsequent step:

foreach * : mrtransform IN/wmfod_norm.mif -warp IN/subject2template_warp.mif -
—noreorientation IN/fod_in_template_space.mif

25.3. Fixel-based analysis steps 111

http://www.ncbi.nlm.nih.gov/pubmed/26004503

MRtrix Documentation, Release 3.0

25.3.11 14. Segment FOD images to estimate fixels and their apparent fibre density
(FD)

Here we segment each FOD lobe to identify the number and orientation of fixels in each voxel. The output also
contains the apparent fibre density (AFD) value per fixel estimated as the FOD lobe integral (see here for details on
FOD segmentation). Note that in the following steps we will use a more generic shortened acronym - Fibre Density
(FD) instead of AFD, since the following steps can also apply for other measures of fibre density (see the note below).
The terminology is also consistent with our recent work:

foreach » : fod2fixel IN/fod_in_template_space.mif -mask ../template/voxel _mask.mif
—IN/fixel_in_template_space —-afd fd.mif

25.3.12 15. Reorient fixel orientations

Here we reorient the direction of all fixels based on the Jacobian matrix (local affine transformation) at each voxel in
the warp. Note that in-place fixel reorientation can be performed by specifing the output fixel folder to be the same as
the input, and using the —force option:

foreach » : fixelreorient IN/fixel_in_template_space IN/subject2template_warp.mif IN/
—fixel_in_template_space -—-force

25.3.13 16. Assign subject fixels to template fixels

In step 8 & 9 we obtained spatial correspondence between subject and template. In step 14 we corrected the fixel
orientations to ensure angular correspondence of the segmented peaks of subject and template. Here, for each fixel
in the template fixel analysis mask, we identify the corresponding fixel in each voxel of the subject image and assign
the FD value of the subject fixel to the corresponding fixel in template space. If no fixel exists in the subject that
corresponds to the template fixel then it is assigned a value of zero. See this paper for more information. In the
command below, you will note that the output fixel directory is the same for all subjects. This directory now stores
data for all subjects at corresponding fixels, ready for input to fixelcfestats in step 20 below:

foreach * : fixelcorrespondence IN/fixel_in_template_space/fd.mif ../template/fixel_
—mask ../template/fd PRE.mif

25.3.14 17. Compute fibre cross-section (FC) metric

Apparent fibre density, and other related measures that are influenced by the quantity of restricted water, only per-
mit the investigation of group differences in the number of axons that manifest as a change to within-voxel density.
However, depending on the disease type and stage, changes to the number of axons may also manifest as macroscopic
differences in brain morphology. This step computes a fixel-based metric related to morphological differences in fibre
cross-section, where information is derived entirely from the warps generated during registration (see this paper for
more information):

foreach * : warp2metric IN/subject2template_warp.mif -fc ../template/fixel _mask ../
—template/fc IN.mif

Note that the FC files will be used in the next step. However, for group statistical analysis of FC we recommend taking
the log(FC) to ensure data are centred about zero and normally distributed. We could place all the log(FC) fixel data
files in the same fixel directory as the FC files (as long as they are named differently. However to keep things tidy,
create a separate fixel directory to store the log(FC) data and copy the fixel index and directions file across:

112 Chapter 25. Fibre density and cross-section - Multi-tissue CSD

http://www.sciencedirect.com/science/article/pii/S1053811912011615
https://www.ncbi.nlm.nih.gov/pubmed/27639350
http://www.ncbi.nlm.nih.gov/pubmed/26004503
https://www.ncbi.nlm.nih.gov/pubmed/27639350

MRtrix Documentation, Release 3.0

mkdir ../template/log_fc
cp ../template/fc/index.mif ../template/fc/directions.mif ../template/log_fc
foreach » : mrcalc ../template/fc/IN.mif -log ../template/log_fc/IN.mif

25.3.15 18. Compute a combined measure of fibre density and cross-section (FDC)

To account for changes to both within-voxel fibre density and macroscopic atrophy, fibre density and fibre cross-section
must be combined (a measure we call fibre density & cross-section, FDC). This enables a more complete picture of
group differences in white matter. Note that as discussed in this paper, group differences in FD or FC alone must be
interpreted with care in crossing-fibre regions. However group differences in FDC are more directly interpretable. To
generate the combined measure we ‘modulate’ the FD by FC:

mkdir ../template/fdc

cp ../template/fc/index.mif cp ../template/fc/directions.mif ../template/fdc

foreach % : mrcalc ../template/fd/IN.mif ../template/fc/IN.mif -mult ../template/fdc/
—IN.mif

25.3.16 19. Perform whole-brain fibre tractography on the FOD template

Statistical analysis using connectivity-based fixel enhancement exploits connectivity information derived from prob-
abilistic fibre tractography. To generate a whole-brain tractogram from the FOD template. Note the remaining steps
from here on are executed from the template directory:

cd ../template
tckgen -angle 22.5 -maxlen 250 -minlen 10 -power 1.0 wmfod_template.mif -seed_image
—voxel_mask.mif -mask voxel_mask.mif -select 20000000 tracks_20_million.tck

25.3.17 20. Reduce biases in tractogram densities

Perform SIFT to reduce tractography biases in the whole-brain tractogram:

tcksift tracks_20_million.tck fod_template.mif tracks_2_million_sift.tck -term_number
2000000

25.3.18 21. Perform statistical analysis of FD, FC, and FDC

Statistical analysis is performed using connectivity-based fixel enhancement, with a separate analysis for FD, FC, and
FDC as follows:

fixelcfestats fd files.txt design_matrix.txt contrast_matrix.txt input_tracks_2_
—million_sift.tck stats_fd

fixelcfestats log_fc files.txt design_matrix.txt contrast_matrix.txt input_tracks_2_
—million_sift.tck stats_log_fc

fixelcfestats fdc files.txt design_matrix.txt contrast_matrix.txt input_tracks_2_
—million_sift.tck stats_fdc

Where the input files.txt is a text file containing the filename of each file (i.e. not the full path) to be analysed inside
the input fixel directory, each filename on a separate line. The line ordering should correspond to the lines in the file
design_matrix.txt. Note that for correlation analysis, a column of 1’s will not be automatically included (as
per FSL randomise). Note that fixelcfestats currently only accepts a single contrast. However if the opposite

25.3. Fixel-based analysis steps 113

https://www.ncbi.nlm.nih.gov/pubmed/27639350
http://www.ncbi.nlm.nih.gov/pubmed/26004503
http://www.ncbi.nlm.nih.gov/pubmed/26004503

MRtrix Documentation, Release 3.0

(negative) contrast is also required (i.e. a two-tailed test), then use the —neg option. Several output files will generated
all starting with the supplied prefix.

Note: We recommend having no more than 500,000 fixels in the analysis fixel mask (you can check this by mrinfo
-size ../template/fixel_template/mask.mif, and looking at the size of the image along the Ist di-
mension), otherwise fixelcfestats will run out of RAM. A mask with 500,000 fixels will require a PC with 128GB of
RAM for the statistical analysis step. To reduce RAM requirements, you could reduce the number of fixels by reducing
the extent of upsampling, or apply a higher threshold when computing the fixel analysis mask (at the risk of removing
WM regions from your analysis); further discussion in the ‘Commands crashing due to memory requirements‘_
section.

25.3.19 22. Visualise the results

To view the results load the population FOD template image in mrview, and overlay the fixel images using the vector
plot tool. Note that p-value images are saved as 1-p-value. Therefore to visualise all p-values < 0.05, threshold the
fixels using the fixel plot tool at 0.95.

114 Chapter 25. Fibre density and cross-section - Multi-tissue CSD

CHAPTER 20

Expressing the effect size relative to controls

The apparent Fibre Density (FD) and Fibre Density and Cross-section (FDC) are relative measures and have arbitrary
units. Therefore the units of abs_effect .mif output from fixelcfestats are not directly interpretable. In a patient-
control group comparison, one way to present results is to express the absolute effect size as a percentage relative to
the control group mean.

To compute FD and FDC percentage decrease effect size use:

mrcalc fd_stats/abs_effect.mif fd_stats/betal.mif -div 100 -mult fd_stats/percentage_
—effect.mif

where betal.mif is the beta output that corresponds to your control population mean.

Because the Fibre Cross-section (FC) measure is a scale factor it is slightly more complicated to compute the percent-
age decrease. The FC ratio between two subjects (or groups) tells us the direct scale factor between them.

For example, for a given fixel if the patient group mean FC is 0.7, and control mean is 1.4, then this implies encom-
passing fibre tract in the patients is half as big as the controls: 0.7/1.4 = 0.5. Le. this is a 50% reduction wrt to the
controls: 1 - (FC_patients/FC_controls)

Because we peform FBA of log(FC), the abs_effect that is output from fixelcfestats is: abs_effect = log(FC_controls)
- log(FC_patients) = log(FC_controls/FC_patients). Therefore to get the percentage effect we need to perform 1 -
1/exp(abs_effect):

mrcalc 1 1 fc_stats/abs_effect.mif -exp -div -sub fc_stats/fc_percentage_effect.mif

115

MRtrix Documentation, Release 3.0

116 Chapter 26. Expressing the effect size relative to controls

CHAPTER 27

Displaying results with streamlines

Fixels rendered as lines using the fixel plot tool of mrview are appropriate for viewing 2D slices (e.g. Fig. 6 in this
paper); however to better appreciate all the fibre pathways affected and to visualise the full extent of the results in 3D,
we developed a visualisation approach based on the whole-brain template-derived tractogram (as explained by Fig 4).

First use tckedit to reduce the whole-brain template tractogram to a sensible number of streamlines (2 million is
too many for typical graphics cards to render smoothly). This step assumes you have the same folder structure and
filenames from the FBA tutorials. From the template directory:

tckedit tracks_2 million_sift.tck —num 200000 tracks_200k_sift.tck

Map fixel values to streamline points, save them in a “track scalar file”. For example:

fixel2tsf stats_fdc/fwe_pvalue.mif tracks_200k_sift.tck fdc_fwe_pvalue.tsf
fixel2tsf stats_fdc/abs_effect_size.mif tracks_200k_sift.tck fdc_abs_effect_size.tsf

Visualise track scalar files using the tractogram tool in MRview. First load the streamlines (tracks_200k_sift.tck).
Then right click and select ‘colour by (track) scalar file’. For example you might load the abs_effect_size.
t st file. Then to dynamically threshold (remove) streamline points by p-value select the “Thresholds” dropdown and
select “Separate Scalar file” to load fwe_pvalue.tsf.

Note that you can also threshold and view all brain fixels by deselecting “crop to slice” in the fixel plot tool. However
it can be harder to appreciate the specific pathways affected. The downside to viewing and colouring results by
streamline, then viewing all streamlines (uncropped to slice), is that without transparency you only see the colours on
the outside of the significant pathways, where normally the effect size/p-value is most severe in the ‘core’ of the fibre
pathway.

117

http://www.sciencedirect.com/science/article/pii/S1053811916304943
http://www.sciencedirect.com/science/article/pii/S1053811916304943
http://www.sciencedirect.com/science/article/pii/S1053811916304943

MRtrix Documentation, Release 3.0

118 Chapter 27. Displaying results with streamlines

CHAPTER 28

Warping images using warps generated from other packages

The mrt ransformcommand applies warps in a deformation field format (i.e. where each voxel specifies the scanner
space position in the corresponding image). However, you can also use mrt rans formto apply warps generated from
other packages that are in any format using the following steps.

1. Generate an identity warp using the input moving image (i.e. the image you wish to warp):

warpinit input_fod_image.mif identity_warp[].nii

2. Compute a MRtrix compatible warp by transforming the identity warp using your registration of choice. For
example if you are using the ANTS registration package:

for i in {0..2};
do;
WarpImageMultiTransform 3 identity_warp${i}.nii mrtrix_warp{i}.nii -R template.
—nii ants_warp.nii ants_affine.txt;
done;

3. Correct the mrtrix warp. When transforming identity_warp.nii and producing the mrtrix_warp images, most
registration packages will output 0.0 as the default value when the transformation maps outside the input image.
This will result in many voxels in the output mrtrix_warp (which is a deformation field) pointing to the origin
(0.0, 0.0, 0,0), particularly around the edge of the warp if an affine registration was performed. To correct this
and convert all voxels with 0.0,0.0,0.0 to nan,nan,nan (suitable for mrtransform):

warpcorrect mrtrix_warp([].nii mrtrix_warp_corrected.mif

4. Warp the image. mrt ransform can warp any 3D or 4D image, however if the number of volumes in the 4th
dimension equals the number of coefficients in an antipodally symmetric spherical harmonic series (i.e. 6, 15,
28 etc), then it assumes the image to be an FOD image and reorientation is automatically applied. Also note that
FOD modulation can be applied using the option -modulation. This preserves the total apparent fibre density
across the width of each bundle before and after warping:

mrtransform input_fod_image.mif -warp mrtrix_warp_corrected.mif warped_fod_image.
—mif

119

http://www.ncbi.nlm.nih.gov/pubmed/22183751
http://www.ncbi.nlm.nih.gov/pubmed/22036682

MRtrix Documentation, Release 3.0

120 Chapter 28. Warping images using warps generated from other packages

CHAPTER 29

Diffusion gradient scheme handling

An essential piece of information for DWI processing is the diffusion-weighted (DW) gradient scheme, also known
as the “DW gradient table”, the “DW encoding”, the “b-vectors”, the “bvecs”, and other variations on the theme.
This table provides information about the diffusion sensitisation gradients applied during acquisition of each imaging
volume in a DWI dataset, usually in the form of the b-value and the (unit) vector for the DW gradient direction. In this
page we will describe the details of how this information is typically stored / represented, and how MRtrix3 handles /
manipulates this data.

29.1 Gradient table storage

MRtrix3 allows the DW gradient table to be read directly from, or written to, the image headers for specific image
formats; notably DICOM (folder or .dcm) (read-only) and the MRtrix image formats (.mih /.mif) (read/write). MRtrix3
applications will automatically make use of this information when it is available for the input dataset through storage
of the table within the image header, without requiring explicit intervention from the user. In addition, MRtrix3
commands can also import or export this information from/to two different external file formats: typically referred to
as the MRtrix format and the FSL format. These differ in a number of respects, as outlined below.

29.1.1 MRtrix format

This format consists of a single ASCII text file, with no restrictions on the filename. It consists of one row per entry
(i.e. per DWI volume), with each row consisting of 4 space-separated floating-point values; these correspond to [x
v z b],where [x y z] arethe components of the gradient vector, and b is the b-value in units of s/mm?. A
typical MRtrix format DW gradient table file might look like this:

Listing 1: grad.b:

0 0 0 0

0 0 0 0
-0.0509541 0.0617551 -0.99679 3000
0.011907 0.955047 0.296216 3000
-0.525115 0.839985 0.136671 3000

(continues on next page)

121

MRtrix Documentation, Release 3.0

(continued from previous page)

-0.785445 -0.6111 -0.0981447 3000
0.060862 -0.456701 0.887536 3000
0.398325 0.667699 0.6289 3000

-0.680604 0.689645 -0.247324 3000
0.237399 0.969995 0.0524565 3000
0.697302 0.541873 -0.469195 3000

-0.868811 0.407442 0.28135 3000

It is important to note that in this format, the direction vectors are assumed to be provided with respect to real or
scanner coordinates. This is the same convention as is used in the DICOM format. Also note that the file does not
need to have the file type extension . Db (or any other particular suffix); this is simply a historical convention.

29.1.2 Image header

When using the MRtrix image formats (.mih / .mif), MRtrix3 has the capability of embedding the diffusion gradient
table within the header of the image file. This provides significant advantages when performing image processing:

* The table accompanies the image data at all times, which means that the user is not responsible for tracking
which diffusion gradient table corresponds to which image file, or whether or not a particular gradient table file
reflects some manipulation that has been applied to an image.

e In MRtrix3 commands that require a diffusion gradient table, and/or make modifications to the image data that
require corresponding modifications to the diffusion gradient table, these data will be utilised (and/or modified)
automatically, without requiring explicit intervention from the user.

For these reasons, the general recommendation of the MRtrix3 team is to make use of the MRirix image formats (.mih
/ .mif) whenever possible.

This embedding is achieved by writing an entry into the Image Header key-value pairs, using the key dw_scheme.
The value of this entry is the complete diffusion gradient table, stored in the MRtrix format. However, this entry
should generally not be accessed or manipulated directly by users; instead, users should rely on the internal handling
of these data as performed by MR¢rix3 commands, or where relevant, use the command-line options provided as part
of specific MRtrix3 commands, as detailed later.

29.1.3 FSL format

This format consists of a pair of ASCII text files, typically named bvecs & bvals (or variations thereof). The
bvals file consists of a single row of space-separated floating-point values, all in one row, with one value per volume
in the DWI dataset. The bvecs file consists of 3 rows of space-separated floating-point values, with the first row
corresponding to the x-component of the DW gradient vectors, one value per volume in the dataset; the second row
corresponding to the y-component, and the third row to the z-component. A typical pair of FSL format DW gradient
files might look like:

Listing 2: bvecs:

0 0 -4.30812931665e-05 -0.00028279245503 -0.528846962834659 -0.781281266220383 0.
—014299684287952 0.36785999072309 -0.66507232482745 0.237350171404029 O.
—721877079467007 -0.880754419294581 0 -0.870185851757858

0 0 -0.002606397951389 -0.97091525561761 -0.846605326714759 0.615840299891175 0.
—403330065122241 -0.70377676751476 -0.67378508548543 -0.971399047063277 -0.
—513131073140676 —-0.423391107245363 0 -0.416501756655988

0 0 -0.999996760803023 0.23942421337746 0.059831733802001 -0.101684552642539 0.
A4 2902 7752230 6077644747636 —0-32261498966359—0- 0676046786179

(cor‘l)mnues on next page)
—464317089148873 0.212157919445896 0 -0.263255013300656

122 Chapter 29. Diffusion gradient scheme handling

MRtrix Documentation, Release 3.0

(continued from previous page)

|

Listing 3: bvals:

0 0 3000 3000 3000 3000 3000 3000 3000 3000 3000 3000

It is important to note that in this format, the gradient vectors are provided with respect to the image axes, not in real
or scanner coordinates (actually, it’s a little bit more complicated than that, refer to the FSL wiki for details). This
is a rich source of confusion, since seemingly innocuous changes to the image can introduce inconsistencies in the
b-vectors. For example,